Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


The pressure drop in pipe flow due to fluid friction with pipe walls depends on mass flux density and friction factor distribution along the pipe.

LaTeX Math Block
anchordpdl
alignmentleft
\left(   \frac{dp}{dl} \right)_f = - \frac{ j_m^2}{2 d}  \cdot \frac{f(l)}{\rho(l)}

where

LaTeX Math Inline
bodyl

pipe length 

LaTeX Math Inline
bodyj_m = \dot m / A

mass flux

LaTeX Math Inline
body \dot m (l) = \dot m = \rm const

mass flowrate 

LaTeX Math Inline
bodyd

pipe diameter

LaTeX Math Inline
body--uriencoded--A = 0.25 \, \pi \, d%5e2

pipe cross-section area

LaTeX Math Inline
body--uriencoded--f= f(%7B\rm Re%7D, \epsilon)

Darcy friction factor

LaTeX Math Inline
body\epsilon

inner pipe walls roughness

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D = \frac%7Bj_m \, d%7D%7B\mu%7D

Reynolds number 

LaTeX Math Inline
body\mu(T, p)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and pressure 
LaTeX Math Inline
bodyp


The accurate calculations require
solving of a self-consistent equation of Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model.

There are few popular practical approximations based on assumption of constant friction factor and  linear density-pressure equation of state.


Approximations




LaTeX Math Block
anchor2
alignmentleft
\Delta p(L)=- \frac{j_m^2}{\rho_0} \cdot \frac{f_0 \, L}{2 \, d } 


LaTeX Math Inline
bodyf(l)= f_0 = \rm const

LaTeX Math Inline
body\rho(l)=\rho_0= \rm const

Incompressible fluid


LaTeX Math Block
anchor2
alignmentleft
\Delta p (L) =- \frac{\rho_0}{c^*} \cdot  \left[
1 - \sqrt{  1 - j_m^2 \cdot \frac{c^* \rho^*}{\rho_0^2} 
\cdot \frac{f_0 L}{d}}
\right]


LaTeX Math Inline
bodyf(l)= f_0 = \rm const

LaTeX Math Inline
body--uriencoded--\rho(l)=\rho%5e* \cdot (1 + c%5e* \, p)

LaTeX Math Inline
body--uriencoded--c%5e* \, p \ll 1

Slightly compressible fluid


LaTeX Math Block
anchor2
alignmentleft
\Delta p (L) =- p_0 \cdot \left[ 1- \sqrt{ 

1 - \frac{j_m^2}{\rho_0 \, p_0} \cdot \frac{f_o L}{d} 

} \right] 


LaTeX Math Inline
bodyf(l)= f_0 = \rm const

LaTeX Math Inline
body--uriencoded--\displaystyle \rho(l)= \frac%7B\rho_0%7D%7Bp_0%7D \cdot p


Ideal gas


LaTeX Math Block
anchor2
alignmentleft
\Delta p (L) =- \frac{j_m^2}{\rho_0} \cdot \frac{f_0}{2 \, d} \cdot 
\frac{ 1- \exp \left( - c^* \rho^* G \, L \right)}{c^* \rho^* G}



LaTeX Math Inline
bodyf(l)= f_0 = \rm const

LaTeX Math Inline
body--uriencoded--\rho(l)=\rho_0 \cdot \exp (c%5e* \rho%5e* G \, l)

Gravity dominated density distribution


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model

Darcy friction factor ] [ Darcy friction factor @model ] [ Reynolds number in Pipe Flow ]