Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Block
anchorCRMST
alignmentleft
q^{\uparrow}(t) =  f \, q^{\downarrow}(t)  - \tau \cdot \frac{ d q^{\uparrow}}{ dt }  - \betagamma \cdot \frac{d p_{wf}}{dt}

...

LaTeX Math Inline
bodyq^{\uparrow}(t)

average surface production per well

LaTeX Math Inline
bodyq^{\downarrow}(t)

average surface injection per well

LaTeX Math Inline
bodyp_{wf}(t)

average bottomhole pressure in producers

LaTeX Math Inline
bodyf

unitless constant, showing the share of injection which actually contributes to production

LaTeX Math Inline
body\tau

time-measure constant, related to well productivity

LaTeX Math Inline
body\betagamma

storage-measure constant, related to dynamic drainage volume and total compressibility

...

LaTeX Math Block
anchorbeta
alignmentleft
\betagamma = c_t \, V_\phi


LaTeX Math Block
anchorIYYPU
alignmentleft
\tau = \frac{\betagamma}{J} = \frac{c_t  V_\phi}{J}

...

Panel
bgColorPapayaWhip


Expand
titleDerivation

The first assumption of CRM is that productivity index of producers stays constant in time:

LaTeX Math Block
anchorJ
alignmentleft
J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can be re-written as explicit formula for formation pressure:

LaTeX Math Block
anchorp_r
alignmentleft
p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

LaTeX Math Block
anchor1
alignmentleft
V_\phi = V_r \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

LaTeX Math Block
anchorct
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \rm const

which can be easily integrated:

LaTeX Math Block
anchor4XNCY
alignmentleft
V_{\phi}(t) =V^\circ_{\phi} \cdot \exp \big[ - c_t \cdot  [p_i - p_r(t)] \big]

where

LaTeX Math Inline
bodyp_i
is field-average initial formation pressure,
LaTeX Math Inline
bodyV^\circ_{\phi}
is initial drainage volume,


LaTeX Math Inline
bodyp_r(t)
– field-average formation pressure at time moment
LaTeX Math Inline
bodyt
,

LaTeX Math Inline
bodyV_{\phi}(t)
is drainage volume at time moment
LaTeX Math Inline
bodyt
.


Equation

LaTeX Math Block Reference
anchorct
can be rewritten as:

LaTeX Math Block
anchordVphi
alignmentleft
dV_{\phi} = c_t \, V_{\phi} \, dp


The dynamic variations in drainage volume

LaTeX Math Inline
bodydV_{\phi}
are due to production/injection:

LaTeX Math Block
anchor4XNCY
alignmentleft
dV_{\phi}= \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau

and leading to corresponding formation pressure variation:

LaTeX Math Block
anchor4XNCY
alignmentleft
dp = p_i - p_r(t)

thus making

LaTeX Math Block Reference
anchordVphi
become:

LaTeX Math Block
anchor4XNCY
alignmentleft
\int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and substituting

LaTeX Math Inline
bodyp_r(t)
from productivity equation
LaTeX Math Block Reference
anchorp_r
:

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \biggleft[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \biggright]

which leads to

LaTeX Math Block Reference
anchorCRMST
.



...

LaTeX Math Block
anchorM00IX
alignmentleft
E[\tau, \betagamma, f] = \sum_k \big[ q^{\uparrow}(t_k) - \tilde q^{\uparrow}(t_k) \big]^2   \rightarrow \min 

...

LaTeX Math Block
anchor4SBJA
alignmentleft
\tau \geq  0 , \quad \betagamma \geq 0,  \quad  0 \leq f \leq 1

...

LaTeX Math Block
anchorO2A2V
alignmentleft
q^{\uparrow}_n (t) +  \tau_n \cdot  \frac{ d q^{\uparrow}_n}{ dt }= \sum_m f_{nm} \cdot q^{\downarrow}_m(t)  - \betagamma_n  \cdot  \frac{d p_n}{dt}

...

LaTeX Math Block
anchorqexp
alignmentleft
q^{\uparrow}_n (t) =\tau_n^{-1} \exp(-t/\tau_n) \cdot \int_0^t \exp(s/\tau_n) \left[ \sum_m f_{nm} q^{\uparrow}_m(s) - \betagamma_n \frac{dp_n}{ds} \right] ds 

...

LaTeX Math Block
anchorPQYQ2
alignmentleft
E[\tau_n, \betagamma_n, f_{nm}] = \sum_k \sum_n \big[ q^{\uparrow}_n(t_k) - \tilde q^{\uparrow}_n(t_k) \big]^2   \rightarrow \min 

...

LaTeX Math Block
anchorW2JXJ
alignmentleft
\tau_n \geq  0 ,  \quad \betagamma_n \geq 0,  \quad f_{nm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{nm} \leq 1

...

LaTeX Math Block
anchorLBWVO
alignmentleft
Q^{\uparrow}_jn (t) = \sum_i^{n_i} f_{ijnm} Q^{\downarrow}_in(t)  - \tau_jn \cdot \big[ q^{\uparrow}_jn(t) - q^{\uparrow}_jn(0) \big]  - \betagamma_jn \cdot \big[ p_jn(t) - p_jn(0) \big]


The objective function is:

LaTeX Math Block
anchorFNDCZ
alignmentleft
E[\tau_n, \betagamma_n, f_{nm}] =  \sum_k \sum_jn \big[ Q^{\uparrow}_jn(t_k) - \tilde Q^{\uparrow}_jn(t_k) \big]^2   \rightarrow \min 

...

LaTeX Math Block
anchorVBB0S
alignmentleft
\tau_j \geq  0 ,  \quad \betagamma_jn \geq 0,  \quad f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1

...

LaTeX Math Block
anchorJ57KH
alignmentleft
p_n(t) = p_n(0) - \tau_n / \betagamma_n  \cdot \big[ q^{\uparrow}_n(t) - q^{\uparrow}_n(0) \big]  - \betagamma_n^{-1} \cdot Q^{\uparrow}_n (t) + \betagamma_n^{-1} \cdot \sum_m f_{nm} Q^{\downarrow}_m(t)  


The objective function is:

LaTeX Math Block
anchorE2QZRHRSYF
alignmentleft
Q^{\uparrow}_j (t) = \sum_i^{n_i} f_{ij} Q^{\downarrow}_i(t)  - \tau_j \cdot \big[ q^{\uparrow}_j(t) - q^{\uparrow}_j(0) \big]  - \beta_j \cdot \big[ p_j(t) - p_j(0) \big]

The objective function is:

LaTeX Math Block
anchorHRSYF
alignmentleft
E[\tau, \beta, fE[\tau_n, \gamma_n, f_{nm}] =  \sum_k \sum_jn \big[ Q^{\uparrow}_jn(t_k) - \tilde Q^{\uparrow}_jn(t_k) \big]^2   \rightarrow \min 

...

LaTeX Math Block
anchor4BDL3
alignmentleft
\tau_jn \geq  0 ,  \quad \betagamma_jn \geq 0,  \quad f_{ijnm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1

...