Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Fig. 1. Location map of injector-producer pairing with 4 producers {W1, W2, W3W4} and one injector W0.

Case #1 –  Constant flowrate production: 
LaTeX Math Inline
bodyq_1 = \rm const >0


The bottom-hole pressure response 

LaTeX Math Inline
body\delta p_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_0
 in injector W0:

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1 

LaTeX Math Inline
bodyq_1 = \rm const
 and varying injection rate at injector W2 
LaTeX Math Inline
bodyq_2(t)
:

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau) = p_i - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau)

Consider a step-change in injector's W0 flowrate 

LaTeX Math Inline
body \delta q_0
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as: 
LaTeX Math Inline
bodydq_0 (\tau) = \delta q_0 \cdot \delta(\tau) \, d\tau
.

The responding pressure variation 

LaTeX Math Inline
body\delta p_1
in producer Wwill be:

LaTeX Math Block
anchor1
alignmentleft
\delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau)  \delta q_0 \cdot \delta(\tau) \,  d\tau = - p_{u,\rm 01}(t) \cdot  \delta q_0

which leads to 

LaTeX Math Block Reference
anchorCase1
.



Case #2 – Constant BHP
LaTeX Math Inline
bodyp_1 = \rm const


Assume that the flowrate in producer W1 is being automatically adjusted by

LaTeX Math Inline
body\delta q_1(t)
 to compensate the bottom-hole pressure variation 
LaTeX Math Inline
body\delta p_1(t)
in response to the  total sandface flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W0 so that bottom-hole pressure in producer W1 stays constant at all times
LaTeX Math Inline
body\delta p_1(t) = \delta p_1 = \rm const
. In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

For the finite-volume reservoir 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,0} < \infty
 the DTR and CTR are both going through the PSS flow regime at late transient times:


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi, 1}}



LaTeX Math Block
anchorCase2_PSS_p21
alignmentleft
p_{u,\rm 01}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi,2}}


where

LaTeX Math Inline
bodyc_t

average drain-area  total compressibility of formation within  

LaTeX Math Inline
bodyV_{\phi,1}
 which is jointly drained by  by producer W1 and injector W0 

Substituting 

LaTeX Math Block Reference
anchorCase2_PSS_p11
 and 
LaTeX Math Block Reference
anchorCase2_PSS_p21
 in 
LaTeX Math Block Reference
anchorCase2
 one arrives to
LaTeX Math Block Reference
anchorCase2_PSS
.


...

LaTeX Math Block
anchorfok1
alignmentleft
\sum_{k=1}^N f_{0k} = 1

with constant coefficients

LaTeX Math Inline
bodyf_{0k} \geq 0, \ {k=\{i..N \} }
unless there is a thief injection outside the drain drainage area of all producers and in this case: 

LaTeX Math Block
anchorfokless1
alignmentleft
\sum_{k=1}^N f_{0k} < 1



If pressure in producer around producer W1 is supported by several injectors 

LaTeX Math Inline
bodyN_{\rm inj} > 1
then over a long period of time one can assume:

LaTeX Math Block
anchorfk1
alignmentleft
\delta q_1 =\sum_k f_{k1i1} \delta q_ki

with constant coefficients

LaTeX Math Inline
bodyf_{1ki1} \geq 0, \ {k=\{1i..N_{\rm inj} \} }


The equations 

LaTeX Math Block Reference
anchorfok1
LaTeX Math Block Reference
anchorfokless1
 and 
LaTeX Math Block Reference
anchorfk1
make one of the key assumptions in Capacitance Resistance Model (CRM).


It is important to note that assumption that injector W0 may drain bigger volume  than producer W1  

LaTeX Math Inline
bodyV_{\phi, 0}> V_{\phi, 1}
 is a misnomer.

When wells (producers and injectors) are placed into interconnected reservoir volume they drain the same volume 

LaTeX Math Inline
bodyV_\phi
alltogether and the DTR/CTR will have the same LTR asymptotic:

LaTeX Math Block
anchor1
alignmentleft
p_{u,\rm ik}(t \rightarrow \infty ) \rightarrow \frac{t}{c_t \, V_\phi}, \forall i,k.


Moreover, if each well is placed in different reservoir volumes which are only connected through wellbores then again they will all drain the same volume which is the sum of all connected volumes through the wellbores and the DTR/CTR will again trend to the same LTR asymptotic.

In order to relate the DTR/CTR from numerical grid simulations or from deconvolution theory to the CRM injection share constants 

LaTeX Math Inline
bodyf_{ik}
 one need to implement a following trick.


See also

...

[ DTR ] [ CTR ] [ Capacitance Resistance Model (CRM) ]

...