Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Motivation



Excerpt Include
Aquifer Drive
Aquifer Drive
nopaneltrue


Inputs & Outputs



InputsOutputs

LaTeX Math Inline
bodyp(t)

field-average formation pressure at time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
bodyQ^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

LaTeX Math Inline
bodyp_i

initial formation pressure

LaTeX Math Inline
bodyq^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

LaTeX Math Inline
bodyB

water influx constant





LaTeX Math Inline
body\chi

aquifer diffusivity

LaTeX Math Inline
bodyA_e

net pay area


Expand
titleDetailing


Detailing Inputs

LaTeX Math Inline
bodyB = \frac{\theta}{2\pi} \cdot A_e \cdot h_a \cdot \phi_a \cdot c_t

water influx constant

LaTeX Math Inline
body\theta

central angle of net pay area ↔ aquifer contact

LaTeX Math Inline
bodyh_a

aquifer effective thickness

LaTeX Math Inline
body\phi_a

aquifer porosity

LaTeX Math Inline
bodyc_t=c_r +c_w

aquifer total compressibility

LaTeX Math Inline
bodyc_r

aquifer pore compressibility 

LaTeX Math Inline
bodyc_w

aquifer water compressibility



Assumptions



Transient flow in Radial Composite Reservoir



Equations



LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD}(t - \tau) \dot p d\tau



LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \frac{dQ^{\downarrow}_{AQ}}{dt}




LaTeX Math Block
anchorCT
alignmentleft
W_{eD}(t)= \int_0^{t} \frac{\partial p_1}{\partial r_D} \bigg|_{r_D = 1} dt_D 







LaTeX Math Block
anchorRC1
alignmentleft
\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D = 0, r_D)= 0



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D, r_D=1) = 1




LaTeX Math Block
anchor1
alignmentleft
\frac{\partial p_1}{\partial r_D} 
\bigg|_{(t_D, r_D=r_a/r_e)} = 0



Expand
titleDerivation

Transient flow in Radial Composite Reservoir:


LaTeX Math Block
anchorRC
alignmentleft
\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]



LaTeX Math Block
anchor1
alignmentleft
p_a(t = 0, r)= p(0)



LaTeX Math Block
anchor1
alignmentleft
p_a(t, r=r_e) = p(t)



LaTeX Math Block
anchorp1_PSS
alignmentleft
\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0



Consider a pressure convolution:


LaTeX Math Block
anchorVEHP
alignmentleft
p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau



LaTeX Math Block
anchor1
alignmentleft
\dot p(\tau) = \frac{d p}{d \tau}



One can easily check that

LaTeX Math Block Reference
anchorVEHP
honors the whole set of equations
LaTeX Math Block Reference
anchorRC
LaTeX Math Block Reference
anchorp1_PSS
and as such defines a unique solution of the above problem.

The the water flowrate at interface with oil reservoir will be:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= C_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}

and cumulative flux:

LaTeX Math Block
anchor1
alignmentleft
\frac{d Q^{\downarrow}_{AQ}}{dt} = q^{\downarrow}_{AQ}(t)



See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models


Reference


 1. van Everdingen, A.F. and Hurst, W. 1949. The Application of the Laplace Transformation to Flow Problems in Reservoirs. Trans., AIME 186, 305.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)

3. Klins, M.A., Bouchard, A.J., and Cable, C.L. 1988. A Polynomial Approach to the van Everdingen-Hurst Dimensionless Variables for Water Encroachment. SPE Res Eng 3 (1): 320-326. SPE-15433-PA. http://dx.doi.org/10.2118/15433-PA