Page tree


Motivation



One of the key tasks of in 
Pipe Flow Dynamics is to predict the along-hole temperature distribution during the stationary fluid transport.

In many practical cases the temperature distribution for the stationary fluid flow can be approximated by homogenous fluid flow model.

Pipeline Flow Temperature Model is addressing this problem with account of the varying pipeline trajectory, pipeline schematic and heat transfer with surroundings around pipeline.


Outputs


T(t, l)

along-pipe temperature distribution and evolution in time


Inputs


{\bf r}(l)

pipeline trajectory{\bf r} = {\bf r}(l) = \{ x(l), \, y(l), \, z(l) \}

\rho(T, p)

A(l)

\mu(T, p)

T_0(t)

inflow temperature

T_{e0}(l)

initial temperature  of the surroundings around the pipeline

p_0

inflow pressure

c_p(l)

specific heat capacity of the surroundings around pipeline

q_0

inflow rate

\lambda_e(l)

thermal conductivity of the surroundings around pipeline

U(l)

heat transfer coefficient  based on pipeline schematic




Physical Model



Mathematical Model


Heat transfer in wellbore due to convection and conduction along the wellbore flowHeat transfer in rocks around the wellbore due to conduction
(1) \rho \, c \, \frac{\partial T}{\partial t} = \frac{d}{dl} \, \bigg( \lambda \, \frac{dT}{dl} \bigg) - \rho \, c \, v \, \frac{dT}{dl} + \frac{2 \lambda}{\lambda_e} \cdot \frac{r_f}{r_w^2} \cdot U \cdot \left[ T_e(t, l, r_w) - T \right]
(2) \rho_e \, c_e \, \frac{\partial T_e}{\partial t} = \nabla ( \lambda_e \nabla T_e)
(3) T(t=0, l) = T_{e0}(l)
(4) T_e(t=0, l, r) = T_{e0}(l)
(5) T(t, l=0) = T_0(t)
(6) T_e(t, l, r \rightarrow \infty) = T_{e0}(l)
(7) T (t, l=l_{max}) =  T_{e0}(l_{max})
(8) T_e(t, 0, r) = T_s(t)

(9) T_e(t, l_{max}, r) = T_{e0}(l_{max})
Heat exchange between wellbore fluid and rocks around the wellbore
(10) 2 \pi \, \lambda_e \, r_w \, \frac{\partial T_e}{\partial r} \, \bigg|_{r=r_w} = 2 \pi \, r_f \, U \cdot \left( T_e \, \bigg|_{r=r_w} - T \right)


(see Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model )


Proxy Models


Linear superposition of Homogenous Pipe Flow Temperature Profile @model and Linear Semiplane Temperature Profile @model


See also


https://en.wikipedia.org/wiki/Darcy_friction_factor_formulae

https://neutrium.net/fluid_flow/pressure-loss-in-pipe/ 


  • No labels