Page tree


Correlation between
Water-Oil-Ratio (WOR) and Water Oil Balance Ratio (WOBR):

{\rm WOR} = \Phi \left( \frac{ \Omega_W^{\downarrow} \cdot Q_W^{\downarrow} - \Omega_W^{\uparrow} \cdot Q_W^{\uparrow} } { EUOR - Q_O^{\uparrow} } \right)

where  \Phi() is some function.

For example, one can select \Phi(x) = x^n and search for the exponent  n, good water percentages  \Omega_W^{\downarrow}\Omega_W^{\uparrow} and even adjust EUOR in order to achieve the best model {\rm WOR}^*(t)  fit to the WOR history:

\sum_t \left\| {\rm WOR}(t) - {\rm WOR}^*(t) \right\| \rightarrow 0
{\rm WOR}^*(t) = \left[ \frac{ \Omega_W^{\downarrow} \cdot Q_W^{\downarrow}(t) - \Omega_W^{\uparrow} \cdot Q_W^{\uparrow}(t) } { EUOR - Q_O^{\uparrow}(t) } \right]^n

where  \left\| x \right\| is the norm of  x.


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling /  Production Analysis /  Watercut Diagnostics

  • No labels