Page tree


The plot of WOR (along y-axis) against the inverse oil production rate q_O (along x-axis) (see Fig. 1).


Fig. 1. WOR (logarithmic vertical axis) vs inverse oil production rate (linear horizontal axis)


It can be used for express Watercut Diagnostics of thief water production.

The mathematical model of the thief water production from  aquifer is based on the following equation:

(1) WOR = \frac{q_W}{q_O} = a + b \, \cdot q^{-1}_O
(2) a = J^{-1}_{1O} \cdot ( J_{1W} + J_{2W})
(3) b = J_{2W} \cdot (p^*_2 - p^*_1)

where


q_W

water production rate

q_O

oil production rate

p^*_1

formation pressure in petroleum reservoir

J_{1W}

water productivity index of petroleum reservoir

J_{1O}

oil productivity index of petroleum reservoir

p^*_2

formation pressure in aquifer

J_{2W}

water productivity index of aquifer



For the case of aquifer pressure is higher than that of petroleum reservoir: b > 0 \Leftrightarrow p^*_2 > p^*_1

For the case of aquifer pressure is lower than that of petroleum reservoir: b < 0 \Leftrightarrow p^*_2 < p^*_1


In practical applications, the equation  (1) is often considered through the weighted average values:

(4) \langle WOR \rangle =\frac{\langle q_W \rangle}{\langle q_O \rangle}  = a + b \cdot \langle q_O^{-1} \rangle

where

\langle q_W \rangle, \ \langle q_O \rangle

are weighted average of q_W and q_O


There are different ways to calculate weighted average of the dynamic variable, for example:

\langle A \rangle_t \ = \frac{1}{t} \int_o^t A(t) \, dt
\langle A\rangle_q \ = \frac{1}{Q(t)} \int_o^t A(t) \, q(t) \, dt


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling /  Production Analysis / Watercut Diagnostics


References


Chan, K. S. (1995, January 1). Water Control Diagnostic Plots. Society of Petroleum Engineers. doi:10.2118/30775-MS







  • No labels