Page tree

(1) \dot m = \dot m_1 + \dot m_2
(2) A = A_1 + A_2
(3) s_1 = A_1/A
(4) s_2 = A_2/A
(5) s_1 + s_2 = 1
(6) u_m = s_1 \cdot \dot u_1 + s_2 \cdot \dot u_2
(7) q_1 = \dot m_1 / \rho_1 = A_1 \, u_1 \Rightarrow \dot m_1 = \rho_1 \, A_1 \, u_1
(8) q_2 = \dot m_2 / \rho_2 = A_2 \, u_2 \Rightarrow \dot m_2 = \rho_2 \, A_2 \, u_2
(9) s_1 = \frac{\dot m_1 \, \rho_2 \, u_2}{\dot m_1 \, \rho_2 \, u_2 + \dot m_2 \, \rho_1 \, u_1}
(10) s_2 = \frac{1}{1+\omega_{12}} \cdot A = \frac{\dot m_2 \, \rho_1 \, u_1}{\dot m_1 \, \rho_2 \, u_2 + \dot m_2 \, \rho_1 \, u_1}


For homogeneous 2-phase pipe flow:  u_1 = u_2 = u_m and volumetric shares are going to be:

(11) s_1 = \frac{\dot m_1 \, \rho_2 }{\dot m_1 \, \rho_2 + \dot m_2 \, \rho_1 }
(12) s_2 = \frac{\dot m_2 \, \rho_1}{\dot m_1 \, \rho_2 + \dot m_2 \, \rho_1}


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics / Pipe Flow Simulation / Multiphase Pipe Flow

Pipe ] [ Pipeline ] [ Pipeline Engineering ]


  • No labels