(1) |
\dot m = \dot m_1 + \dot m_2 |
(6) |
u_m = s_1 \cdot \dot u_1 + s_2 \cdot \dot u_2 |
(7) |
q_1 = \dot m_1 / \rho_1 = A_1 \, u_1 \Rightarrow \dot m_1 = \rho_1 \, A_1 \, u_1 |
|
(8) |
q_2 = \dot m_2 / \rho_2 = A_2 \, u_2 \Rightarrow \dot m_2 = \rho_2 \, A_2 \, u_2 |
|
(9) |
s_1 = \frac{\dot m_1 \, \rho_2 \, u_2}{\dot m_1 \, \rho_2 \, u_2 + \dot m_2 \, \rho_1 \, u_1} |
|
(10) |
s_2 = \frac{1}{1+\omega_{12}} \cdot A = \frac{\dot m_2 \, \rho_1 \, u_1}{\dot m_1 \, \rho_2 \, u_2 + \dot m_2 \, \rho_1 \, u_1} |
|
For homogeneous 2-phase pipe flow:
u_1 = u_2 = u_m and volumetric shares are going to be:
(11) |
s_1 = \frac{\dot m_1 \, \rho_2 }{\dot m_1 \, \rho_2 + \dot m_2 \, \rho_1 } |
|
(12) |
s_2 = \frac{\dot m_2 \, \rho_1}{\dot m_1 \, \rho_2 + \dot m_2 \, \rho_1} |
|
See also
Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics / Pipe Flow Simulation / Multiphase Pipe Flow
[ Pipe ] [ Pipeline ] [ Pipeline Engineering ]