Page tree


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the along-hole temperature distribution during the stationary fluid transport.

Pipeline Flow Temperature Model is addressing this problem with account of the varying pipeline trajectory, pipeline schematic and heat transfer with the matter around pipeline.

The practical time scales in  stationary fluid flow allow considering the cross-phase as thermadynamically equilibrium and all phases are at the same temperature:

(1) T_{\alpha}(t,l) = T(t,l)

Outputs


T(t, l)

along-pipe temperature distribution and evolution in time

Inputs


{\bf r}(l)

pipeline trajectory{\bf r}(l) = \{ x(l), \, y(l), \, z(l) \}

\rho(T, p)

A(l)

\mu(T, p)

T_0(t)

intake temperature

T_{e0}(l)

initial temperature of the medium around the pipeline

p_0

intake pressure

c_p(l)

specific heat capacity of the medium around pipeline

q_0

intake flowrate

\lambda_e(l)

thermal conductivity of the medium around pipeline

U(l)

heat transfer coefficient  based on pipeline schematic



Assumptions


Equations


(2) \rho \, c \, \frac{\partial T}{\partial t} = \frac{d}{dl} \, \bigg( \lambda \, \frac{dT}{dl} \bigg) - \left( \sum_{\alpha} \rho_{\alpha} \, c_{\alpha} \, v_{\alpha} \right) \, \frac{dT}{dl} + \frac{2 \lambda}{\lambda_e} \cdot \frac{r_f}{r_w^2} \cdot U \cdot \left[ T_e(t, l, r_w) - T \right]
(3) \rho_e \, c_e \, \frac{\partial T_e}{\partial t} = \nabla ( \lambda_e \nabla T_e)
(4) T(t=0, l) = T_{e0}(l)
(5) T_e(t=0, l, r) = T_{e0}(l)
(6) T(t, l=0) = T_0(t)
(7) T_e(t, l, r \rightarrow \infty) = T_{e0}(l)
(8) 2 \pi \, \lambda_e \, r_w \, \frac{\partial T_e}{\partial r} \, \bigg|_{r=r_w} = 2 \pi \, r_f \, U \cdot \left( T_e \, \bigg|_{r=r_w} - T \right)


Approximations



See Also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation

[ Homogenous Pipe Flow Temperature Profile @model ][ Pipe Flow Temperature Analytical Ramey @model ]

References