Page tree


Motivation


Analytical model of temperature step-response in a Homogenous Stationary Pipe Flow with account for the heat exchange with surroundings
.

Model equally works for wellbore flow, ground, on-ground and bottom-water pipelines.

Outputs

T(t, l)

Along-hole Temperature Profile

where 

t

Flowing duration

l

Length along pipe


Inputs

T_s

Intake temperature

T_e(l)

Background temperature of the surroundings

\dot m

Mass flowrate

U

Heat Transfer Coefficient (HTC) between pipe fluid and surroundings

a_e

Thermal Diffusivity of the surroundings

r_f

Flowing pipe radius

\lambda_e

Thermal Conductivity of the surroundings

r_w

Wellbore radius


Equations

(1) T(t, l) = T_e(l) - R(t) \, G_e(l) + \Big[ T_s - T_e(0) + R(t) \, G_e(l) \Big] \cdot e^{ - l/R(t)}
(2) G_e = \frac{dT_e}{dl}
(3) t_D(t) = \frac{a_e \, t}{r_w^2}
(4) R(t) = \frac{\dot m \, c_p}{2 \pi \, \lambda_e} \cdot \left( T_D(t) + \frac{\lambda_e}{r_f \, U} \right)
(5) T_D(t) = \ln \Big[ e^{-0.2 \, t_D} + (1.5 - 0.3719 \, e^{-t_D}) \, \sqrt{t_D} \Big]


Assumptions

Intake Flowrate is constant in time

Intake Temperature is constant in time

q_s(t) = q_s = {\rm const}

T_s(t) = T_s = \rm const

Thermal diffusivity of the surroundings is constant along-hole

Thermal Conductivity of the surroundings is constant along-hole

a_e(l) = a_e = \rm const

\lambda_e(l) = \lambda_e = \rm const

Flowing pipe radius is constant along-holeWellbore radius is constant along-hole

r_f(l) = r_f = \rm const

r_w(l) = r_w = \rm const

Heat Transfer Coefficient (HTC) between pipe fluid and surroundings is constant along-hole

U(l) = U = \rm const


See Also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Temperature Profile in Pipe Flow @model / Temperature Profile in Homogenous Pipe Flow @model


References