Page tree

Motivation



One of the key challenges in Pipe Flow Dynamics is to predict the along-hole temperature distribution during the stationary fluid transport.

Pipeline Flow Temperature Model is addressing this problem with account of the varying pipeline trajectory, pipeline schematic and heat transfer with the matter around pipeline.


In many practical cases the along-hole 
temperature distribution during the stationary fluid flow can be approximated by homogenous fluid flow model.


Outputs


T(t, l)

along-pipe temperature distribution and evolution in time


Inputs


{\bf r}(l)

pipeline trajectory{\bf r}(l) = \{ x(l), \, y(l), \, z(l) \}

\rho(T, p)

A(l)

\mu(T, p)

T_0(t)

intake temperature

T_{e0}(l)

initial temperature of the medium around the pipeline

p_0

intake pressure

c_p(l)

specific heat capacity of the medium around pipeline

q_0

intake flowrate

\lambda_e(l)

thermal conductivity of the medium around pipeline

U(l)

heat transfer coefficient  based on pipeline schematic




Assumptions



Equations


(1) \rho \, c \, \frac{\partial T}{\partial t} = \frac{d}{dl} \, \bigg( \lambda \, \frac{dT}{dl} \bigg) - \rho \, c \, v \, \frac{dT}{dl} + \frac{U}{r_w} \cdot \big( T_e(t, l, r_w) - T \big)
(2) \rho_e \, c_e \, \frac{\partial T_e}{\partial t} = \nabla ( \lambda_e \nabla T_e)
(3) T(t=0, l) = T_{e0}(l)
(4) T_e(t=0, l, r) = T_{e0}(l)
(5) T(t, l=0) = T_0(t)
(6) T_e(t, l, r \rightarrow \infty) = T_{e0}(l)
(7) 2 \pi \, \lambda_e \, r_w \, \frac{\partial T_e}{\partial r} \, \bigg|_{r=r_w} = 2 \pi \, r_f \, U \cdot \left( T_e \, \bigg|_{r=r_w} - T \right)



Approximations



See also


References



https://en.wikipedia.org/wiki/Darcy_friction_factor_formulae


https://neutrium.net/fluid_flow/pressure-loss-in-pipe/ 
























  • No labels