Page tree


Motivation


The 
Temperature Flat Source Solution @model is one of the fundamental solutions of temperature diffusion equations modelling the temperature conduction in linear direction (see Fig. 1).

This temperature profile is very common in subsurface studies, particularly in modelling the temperature above and below the lateral reservoir flow with a temperature T_f



Outputs


T(t, z)

Temperature distribution


Inputs


t

Time lapse after the temperature step from  T(z=0) =0  up to  T(z=0) =T_f

z

Spatial coordinate along the transversal direction to constant temperature  T(z)= T_f plane  z=0

T_f

Boundary temperature at  z=0

a

Thermal diffusivity of the surroundings


Equations


Driving equationInitial conditions Boundary conditions
(1) \frac{\partial T}{\partial t} = a^2 \Delta T = a^2\frac{\partial^2 T}{\partial z^2}
(2) T(t=0, z) = 0
(3) T(t, z=0) = T_f = {\rm const}
(4) T(t, z \rightarrow \infty) = 0


Solution


(5) T(t,z) = T_f \cdot \left[ 1- \mbox{erf} \left( \frac{z}{\sqrt{4at}} \right) \right] = T_f \cdot \left[ 1- \frac{2}{\sqrt{\pi}} \int_0^{z/\sqrt{4at}} e^{-\xi^2} d\xi \right]

where

\mbox{erf}(x)

Error function


See also


Physics / Fluid Dynamics / Linear Fluid Flow 


  • No labels