Page tree


(1) \sqrt{\, z(t) \,} = \sqrt{\, H \, } - b \cdot t

(2) b = \frac{\phi}{2} \cdot \frac{A}{S} \cdot \sqrt{\, g \,}
(3) \sqrt{\, p(t) \,} = \sqrt{\, p_0 \, } - b \cdot g \cdot t
(4) p_0 = \rho \, g \, H
(5) {\rm v}(t) = {\rm v}_0 - c \cdot g \cdot t
(6) {\rm v}_0 = \phi \cdot \sqrt{2 \, g \, H}
(7) c = \frac{\phi^2}{\sqrt{2}} \cdot \frac{A}{S}
(8) q(t) = q_0 - d \cdot g \cdot t
(9) q_0 = S \cdot \phi \cdot \sqrt{2 \, g \, H}
(10) d = \frac{\phi^2}{\sqrt{2}} \cdot A

where

z(t)

fluid level in the tank above the tank bottom at time  t

H = z(0)

initial fluid level in the tank above the tank bottom

p(t)

pressure at the bottom of the tank at time  t

p_0 = p(0)

initial pressure at the bottom of the tank

{\rm v}(t)

outflow velocity at time  t

{\rm v}_0 = {\rm v}(0)

initial outflow velocity

q(t)

outflow rate at time  t

q_0 = q(0)

initial outflow rate

A

cross-sectional area of the tank

S

cross-sectional area of the drainage orifice

\phi

correction factor for the drainage orifice

g

gravity constant

See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics





  • No labels