Page tree

@wikipedia


One of the cubic equations of real gas state defining the Compressibility factor  Z(p, T) as a function of Gas pressure  p and Gas temperature  T:

(1) Z^3 - Z^2 +(A-B-B^2) \, Z - AB = 0
(2) A=\frac{a \, \alpha \, p}{ R^2 \, T^2}
(3) B=\frac{b \, p}{ R \, T}
(4) a = 0.45747 \cdot \frac{R^2 \, T_c^2}{p_c}
(5) b = 0.08664 \cdot \frac{R \, T_c}{p_c}
(6) \alpha = \left( 1 + \kappa \, (1-T_r^{0.5}) \right)^2
(7) \kappa = 0.48508 + 1.55171 \, \omega -0.15613 \, \omega^2

where

Z

Compressibility factor

p_c

critical pressure

p

Gas pressure

T_c

critical temperature

T

Gas temperature

T_r = T/T_c

reduced temperature

R

Gas constant

\omega

Acentric factor



Once compressibility Z-factor Z(p, T) is known the gas density  \rho can be calculated as:

(8) \rho(p, T) = \frac{1}{Z(p,T)} \cdot \frac{M}{R} \cdot \frac{p}{T}

where

M

Gas molar mass

See also


Natural Science / Physics / Thermodynamics / Equation of State / Real Gas EOS @model

Real Gas ]






  • No labels