Page tree

@wikipedia


In Pipe Flow the Reynolds number can be written in simplified form: 

(1) {\rm Re} = \frac{j_m \cdot d}{\mu(T,p)} = \frac{4 \, \dot m}{\pi \, d} \cdot \frac{1}{\mu(T,p)}

where

\displaystyle j_m = \frac{ \dot m }{ A}

mass flux

\displaystyle \dot m = \frac{dm }{ dt}

mass flowrate

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

\mu(T,p)

dynamic viscosity as function of fluid temperature  T and pressure  p


(2) {\rm Re} = \frac{u \cdot d}{\nu} = \frac{\rho \cdot u \cdot d}{\mu} = \frac{j_m \cdot d}{\mu(T,p)}

where

u

average cross-sectional flow velocity

\rho

fluid density

\nu

kinematic viscosity 


The 
mass flowrate is constant along the pipe:   \dot m = \rm const.

In many engineering application the pipeline is built from inter-connected pipes or ducts with constant cross-sectional area  A = \rm const which means that mass flux is also constant along pipes:   j_m = \rm const.

Equation  (1) shows that in this case a variation of Reynolds number along the pipe will be a function of fluid viscosity only:  {\rm Re} = {\rm Re}(\mu)  which in turn is a function of fluid temperature  T(l) and pressure  p(l) along the pipe.

See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics /  Fluid Dynamics / Fluid flow regimes / Reynolds number

Pipe Flow / Pipe Flow Dynamics ]



  • No labels