Page tree

@wikipedia


In multiphase flow the Darcy friction factor can be calculated as Darcy friction factor Single-phase @model with specific approximation of Reynolds number:

(1) {\rm Re} = \frac{ \sum_\alpha \rho_\alpha \, u_\alpha^2 \, A_\alpha} {\sum_\alpha \mu_\alpha \, u_\alpha \, \sqrt{A_\alpha} } = \frac{ \sum_\alpha \rho_\alpha \, q_\alpha^2 / A_\alpha} {\sum_\alpha \mu_\alpha \, q_\alpha / \sqrt{A_\alpha} } = \frac{1}{\sqrt{A}} \cdot \frac{ \sum_\alpha \rho_\alpha \, q_\alpha^2 / s_\alpha} {\sum_\alpha \mu_\alpha \, q_\alpha / \sqrt{s_\alpha} }

where

\rho_\alpha

\alpha-phase fluid density

s_\alpha

volume share occupied by  \alpha-phase 

\mu_\alpha

\alpha-phase fluid viscosity

A_\alpha

cross-sectional area occupied by  \alpha-phase 

u_\alpha

\alpha-phase fluid velocity

A

total cross-sectional area


Reynolds number represent the ration of intertial forces to viscous forces:

{\rm Re} = \frac{\rm Intertial \ Forces}{\rm Viscocus \ Forces}

Homogeneous Pipe Flow


Homogeneous Pipe Flow is characterized by the same phase velocities:  u_\alpha = u_t, \, \forall \alpha \in \Gamma (no slippage) and the multiphase Reynolds number takes simpler form:

(2) {\rm Re} =\frac{ \sum_\alpha \rho_\alpha \, u_\alpha \, A_\alpha} {\sum_\alpha \mu_\alpha \, \sqrt{A_\alpha} } =\frac{ \dot m} {\sum_\alpha \mu_\alpha \, \sqrt{A_\alpha} } = \frac{\dot m}{\sqrt{A}} \cdot \frac{1}{ \sum_\alpha \mu_\alpha \, \sqrt{s_\alpha} }


2-phase Gas-Liquid  flow


{\rm Re} = \frac{\rho_L \, u_L^2 \, A_L + \rho_g \, u_g^2 \, A_g}{\mu_L \, u_L \, \sqrt{A_L} + \mu_g \, u_g \, \sqrt{A_g}}

where

\rho_L

liquid density

\rho_g

gas density

u_L

liquid velocity

u_g

gas velocity

A_L

cross-sectional area occupied by liquid 

A_g

cross-sectional area occupied by gas 

\mu_L

liquid viscosity

\mu_g

gas viscosity


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Reference


L. E. Ortiz-Vidala, N. Mureithib, and O. M. H. Rodrigueza ,TWO-PHASE FRICTION FACTOR IN GAS-LIQUID PIPE FLOW, Engenharia Térmica (Thermal Engineering), Vol. 13, No. 2, December 2014, p. 81-88

Shannak, B. A., 2008, Frictional Pressure Drop of Gas Liquid Two-Phase Flow in Pipes, Nuclear Engineering and Design, Vol. 238, pp. 3277-3284., doi.org/10.1016/j.nucengdes.2008.08.015




  • No labels