Page tree

(1) {\rm F}_{\Gamma}(p, {\bf u}) = 0

where

\Gamma

reservoir boundary

p

reservoir pressure

{ \bf u }

fluid velocity

{\rm F}_{\Gamma}(p, {\bf u})

some function


The popular form of the Reservoir boundary flow condition @model is:

(2) {\rm F}_{\Gamma}(p, {\bf u}) = \big[ a \cdot (p({\bf r}) - p_0) + \epsilon \cdot {\bf n} \cdot M \, (\nabla p - \rho \, {\bf g}) \big]_{{\bf r} \in \Gamma} = 0

where

p(t, {\bf r})

reservoir pressure

t

time

\rho({\bf r},p)

fluid density 

{\bf r }

position vector

M = k / \mu

\nabla

gradient operator

k

formation permeability to a given fluid

{ \bf g }

gravity vector

\mu

dynamic viscosity of a given  fluid

{ \bf u }

fluid velocity 

{ \bf n }

external normal to the reservoir boundary \Gamma

\epsilon \in \{ 0,1 \}

a binary value


The two extreme cases of  (2) are:

Constant PressureNo flow

p({\bf r})_{{\bf r} \in \Gamma} = p_0 = \rm const

{\bf n} \cdot {\bf u} \, \Big|_{{\bf} in \Gamma} = {\bf n} \cdot M \, (\nabla p - \rho \, {\bf g}) \, \Big|_{{\bf} in \Gamma} = 0


The other examples of Reservoir boundary flow condition @model are provided by Aquifer Drive Models and Gas Cap Drive Models.

See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Petroleum Geology / Reservoir boundary

Infinite reservoir boundary  ] [ Reservoir flow boundary ] [ Multiwell Retrospective Testing (MRT) ]

[ Aquifer Drive Models ] [ Gas Cap Drive Models ]

  • No labels