Page tree


While fluid percolates through porous media in infinitesimal volume  \delta V  generates the noise of the power \delta N in a wide frequency range:

(1) \delta N = A(f) \cdot {\bf u} \cdot \nabla p \cdot \delta V

where

{\bf u}

flow velocity

p

fluid pressure

A(f)

normalised noise spectrum,  \displaystyle \int_0^\infty A(f) \, df = 1

f

noise frequency


While propagating through the rocks the different frequencies will decay at different rate  \alpha(f)  and if noise sensor is located at  {\bf r}_0 = \{0, \, 0, \, 0\} then the it will capture:

(2) \delta N_S = \int_V A(f) \cdot {\bf u} \cdot \nabla p \cdot \exp[-\alpha(f)r] \cdot \delta V

The decay decrement  \alpha(f)  is growing with frequency: \displaystyle \frac{d \alpha}{df} > 0.


There is no universal model but it can be approximated by a linear dependance:

(3) \alpha = \alpha_1 \cdot f

with  \alpha_1(f) having much slower dependance on frequency than \alpha(f).


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Percolation / Reservoir Noise


Reference


 McKinley R.M., Bower F.M., Rumble R.C. 1973. The Structure and Interpretation of Noise From Flow Behind Cemented Casing, Journal of Petroleum Technology, 3999-PA

 McKinley, R.M. 1994. Temperature, Radioactive Tracer, and Noise Logging for Well Integrity: 112-156




  • No labels