Page tree

Mathematical model of Heat Transfer Coefficient in the annulus without Natural Thermal Convection is given as:

(1) U = \epsilon_a \cdot \frac{ 2\, \lambda_a}{d_t \cdot \ln (d_{ci}/d_t) }

where

\epsilon_a

Natural Convection Heat Transfer Multiplier



The most popular empirical correlations for Natural Convection Heat Transfer Multiplier are:

(2) \epsilon = \begin{cases} 1, & \mbox{if } \ {\rm Ra} < 10^3 \\ 0.18 \cdot {\rm Ra}^{0.25}, & \mbox{if } \ {\rm Ra} > 10^3 \end{cases}
(3) \epsilon = \begin{cases} 1, & \mbox{if } \ {\rm Ra} < 10^3 \\ 0.105 \cdot {\rm Ra}^{0.3}, & \mbox{if } \ 10^3 < {\rm Ra} < 10^6 \\ 0.4 \cdot {\rm Ra}^{0.2}, & \mbox{if } \ {\rm Ra} > 10^6 \end{cases}

See also


Physics / Thermodynamics / Heat Transfer /  Heat Transfer Coefficient (HTC) / Heat Transfer Coefficient (HTC) @model

Rayleigh number ]

  • No labels