| (7) |
\frac{\partial m_W}{\partial t} + \int\rho_{Ww} \cdot\, \bar u_w \, d \bar \Sigma = \frac{d m^*_W}{dt} |
|
| (8) |
\frac{\partial m_O}{\partial t} + \int \left( \rho_{Oo} \cdot \, \bar u_o + \rho_{Og} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_O}{dt} |
|
| (9) |
\frac{\partial m_G}{\partial t} + \int \left( \rho_{Go} \cdot \, \bar u_o + \rho_{Gg} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_G}{dt} |
| |
| (10) |
\rho_{Ww} = \frac{m_W}{V_w} = \frac{m_W}{V_W} \cdot \frac{V_W}{V_w} = \frac{\mathring \rho_W}{B_w} |
|
| (11) |
\rho_{Oo} = \frac{m_{Oo}}{V_o}
= \frac{m_{Oo}}{V_O} \cdot \frac{V_O}{V_o} = \frac{\mathring \rho_O}{B_o} |
| (12) |
\rho_{Og} = \frac{m_{Og}}{V_g}
= \frac{m_{Og}}{V_{Og}} \cdot \frac{V_{Og}}{V_G} \cdot \frac{V_G}{V_g} = \frac{\mathring \rho_O \cdot R_v}{B_g} |
|
| (13) |
\rho_{Go} = \frac{m_{Go}}{V_o}
= \frac{m_{Go}}{V_{Go}} \cdot \frac{V_{Go}}{V_O} \cdot \frac{V_O}{V_o} = \frac{\mathring \rho_G \cdot R_s}{B_o} |
| (14) |
\rho_{Gg} = \frac{m_{Gg}}{V_g}
= \frac{m_{Gg}}{V_G} \cdot \frac{V_G}{V_g} = \frac{\mathring \rho_G}{B_g} |
| |
| (15) |
\frac{\partial m_W}{\partial t} + \mathring \rho_W \int \frac{1}{B_w} \, \bar u_w \, d \bar \Sigma = \frac{d m^*_W}{dt} |
|
| (16) |
\frac{\partial m_O}{\partial t} + \mathring \rho_O \int \left( \frac{1}{B_o} \cdot \, \bar u_o + \frac{R_v}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_O}{dt} |
|
| (17) |
\frac{\partial m_G}{\partial t} + \mathring \rho_G \int \left( \frac{R_s}{B_o} \cdot \, \bar u_o + \frac{1}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_G}{dt} |
| |
| (18) |
V_W = \mathring \rho_W^{-1} \cdot m_W |
|
| (19) |
V_O = \mathring \rho_O^{-1} \cdot m_O |
|
| (20) |
V_G = \mathring \rho_G^{-1} \cdot m_G |
| |
| (21) |
q_W = \mathring \rho_W^{-1} \cdot \frac{d m^*_W}{dt} |
|
| (22) |
q_O = \mathring \rho_O^{-1} \cdot \frac{d m^*_O}{dt} |
|
| (23) |
q_G = \mathring \rho_G^{-1} \cdot \frac{d m^*_G}{dt} |
| |
| (24) |
\frac{\partial V_W}{\partial t} + \int \frac{1}{B_w} \, \bar u_w \, d \bar \Sigma = q_W |
|
| (25) |
\frac{\partial V_O}{\partial t} + \int \left( \frac{1}{B_o} \cdot \, \bar u_o + \frac{R_v}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = q_O |
|
| (26) |
\frac{\partial V_G}{\partial t} + \int \left( \frac{R_s}{B_o} \cdot \, \bar u_o + \frac{1}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = q_G |
| |
|
|
| (28) |
V_o =\frac{B_o}{1-R_s \, R_v} \cdot (V_O - R_v \, V_G) |
|
| (29) |
V_g =\frac{B_g}{1-R_s \, R_v} \cdot (V_G - R_s \, V_O) |
|
| (30) |
V_\phi = V_w + V_o + V_g |
|
| (31) |
s_w = \frac{V_w}{V_\phi} |
|
| (32) |
s_o = \frac{V_o}{V_\phi} |
|
| (33) |
s_g = \frac{V_g}{V_\phi} |
| |
|
| (35) |
V_\phi = V_w + V_o + V_g = B_w \cdot V_W + \frac{B_o}{1-R_s \, R_v} \cdot \left( V_O - R_v \, V_G \right) + \frac{B_g}{1-R_s \, R_v} \cdot \left( V_G - R_s \, V_O \right) |
|
| (36) |
V_\phi = V_w + V_o + V_g = B_w \cdot V_W + \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} \cdot V_O + \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} \cdot V_G |
|
| (37) |
\phi = \frac{V_\phi}{V} = \frac{V_w}{V} + \frac{V_o}{V} + \frac{V_g}{V} |
|
| (38) |
\phi = B_w \cdot \frac{V_W}{V} + \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} \cdot \frac{V_O}{V} + \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} \cdot \frac{V_G}{V} |
|
| (39) |
\phi = \phi_0 \cdot \exp \big( c_\phi \cdot (p-p_0) \big) |
|
| (40) |
B_w \cdot \frac{V_W}{V} + \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} \cdot \frac{V_O}{V} + \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} \cdot \frac{V_G}{V} = \phi_0 \cdot \exp \big( c_\phi \cdot (p-p_0) \big) |
|
| (41) |
B_w \cdot \frac{V_W}{V_{\phi0}} + \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} \cdot \frac{V_O}{V_{\phi0}} + \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} \cdot \frac{V_G}{V_{\phi0}} = \exp \big( c_\phi \cdot (p-p_0) \big), \quad V_{\phi0} = V \cdot \phi_0 |
|
|
| (42) |
\tilde B_w = \tilde B_w(T,p) = B_w |
|
| (43) |
\tilde B_o = \tilde B_o(T,p) = \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} |
|
| (44) |
\tilde B_g = \tilde B_g(T,p) = \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} |
| |
| (45) |
\tilde B_w \cdot \frac{V_W}{V_{\phi0}} + \tilde B_o \cdot \frac{V_O}{V_{\phi0}} + \tilde B_g \cdot \frac{V_G}{V_{\phi0}} = \exp \big( c_\phi \cdot (p-p_0) \big), \quad V_{\phi0} = V \cdot \phi_0 |
|
|
| (46) |
\bar u_w = - k_p \cdot \frac{k_{rw}}{\mu_w} \cdot \hat k * \big( \bar \nabla} p_w - \rho_w \cdot \bar g \big) |
|
| (47) |
\bar u_o = - k_p \cdot \frac{k_{ro}}{\mu_o} \cdot \hat k * \big( \bar \nabla p_o - \rho_o \cdot \bar g \big) |
|
| (48) |
\bar u_g = - k_p \cdot \frac{k_{rg}}{\mu_g} \cdot \hat k * \big( \bar \nabla p_g - \rho_g \cdot \bar g \big) |
|
| (49) |
k_p = \exp \big[ c_k \, (\,p - p_{\mathrm{ref}}\,) \big] |
|
Given arbitrary coordinate system:
\bold e = \{ \, \bar e_1, \, \bar e_2, \, \bar e_3 \, \}:
| (50) |
\hat k * \bar v =
\bar e_1 \cdot (k_{11} \, v_1 + k_{12} \, v_2 + k_{13} \, v_3)
+ \bar e_2 \cdot (k_{21} \, v_1 + k_{22} \, v_2 + k_{23} \, v_3) + \bar e_3 \cdot (k_{31} \, v_1 + k_{32} \, v_2 + k_{33} \, v_3) |
| (51) |
\hat k * \bar \nabla =
\bar e_1 \, (k_{11} \, \partial_1 + k_{12} \, \partial_2 + k_{13} \, \partial_3)
+ \bar e_2 \,(k_{21} \, \partial_2 + k_{22} \, \partial_2 + k_{23} \, \partial_3) + \bar e_3 \, (k_{31} \, \partial_1 + k_{32} \, \partial_2 + k_{33} \, \partial_3) |
| (52) |
\hat k * \bar g =
\bar e_1 \, (k_{11} \, g_1 + k_{12} \, g_2 + k_{13} \, g_3)
+ \bar e_2 \,(k_{21} \, g_1 + k_{22} \, g_2 + k_{23} \, g_3) + \bar e_3 \, (k_{31} \, g_1 + k_{32} \, g_2 + k_{33} \, g_3) |
|
| (53) |
\rho_w = \frac{ \mathring \rho_W}{B_w} |
|
| (54) |
\rho_o = \frac{ \mathring \rho_O + \mathring \rho_G \cdot R_s}{B_o} |
|
| (55) |
\rho_g = \frac{ \mathring \rho_G + \mathring \rho_O \cdot R_v}{B_g} |
| |
| (56) |
\bar u_w = - k_p \cdot \frac{k_{rw}}{\mu_w} \cdot \big( \hat k * \bar \nabla} p_w - \rho_w \cdot \hat k * \bar g \big) |
|
| (57) |
\bar u_o = - k_p \cdot \frac{k_{ro}}{\mu_o} \cdot \big( \hat k * \bar \nabla p_o - \rho_o \cdot \hat k * \bar g \big) |
|
| (58) |
\bar u_g = - k_p \cdot \frac{k_{rg}}{\mu_g} \cdot \big( \hat k * \bar \nabla p_g - \rho_g \cdot \hat k * \bar g \big) |
| |
| (59) |
\bar u_w = - k_p \cdot \frac{k_{rw}}{\mu_w} \cdot \big( \hat k * \bar \nabla} (p + p_{cw}) - \rho_w \cdot \hat k * \bar g \big) |
|
| (60) |
\bar u_o = - k_p \cdot \frac{k_{ro}}{\mu_o} \cdot \big( \hat k * \bar \nabla (p + p_{co}) - \rho_o \cdot \hat k * \bar g \big) |
|
| (61) |
\bar u_g = - k_p \cdot \frac{k_{rg}}{\mu_g} \cdot \big( \hat k * \bar \nabla (p + p_{cg}) - \rho_g \cdot \hat k * \bar g \big) |
| |
| (62) |
p_w = p + p_{cw}, \quad p_{cw} = \frac{1}{3} \cdot ( -2 \cdot p_{cow} + p_{cog} ) |
|
| (63) |
p_o = p + p_{co}, \quad p_{co} = \frac{1}{3} \cdot (p_{cow} + p_{cog}) |
|
| (64) |
p_g = p + p_{cg}, \quad p_{cg} = \frac{1}{3} \cdot (p_{cow} - 2 \cdot p_{cog} ) |
| |
| | | |
| (68) |
p = \frac{1}{3} \left( p_o + p_g + p_w \right) |
| | |