Page tree

Outputs

\{ s_\alpha \}_{\alpha=1..n}

phase holdup

\{ q_\alpha \}_{\alpha=1..n}

phase volumetric flowrate

Inputs

A

pipe cross-sectional area

\{ \dot m_\alpha \}_{\alpha = 1..n}

phase mass flowrates

\{ \rho_\alpha \}_{\alpha = 1..n}

phase densities

Solver

(1) s_\alpha = \frac{\dot m_\alpha}{\rho_\alpha \, u_\alpha} \cdot \left( \sum_\beta \frac{\dot m_\beta}{\rho_\beta \, u_\beta} \right)^{-1}
(2) q_\alpha = s_\alpha \, u_\alpha \, A

Derivation

Given the multiphase flow of  n phases:  \alpha = 1..n and mass flowrates  \dot m_\alpha

(3) \dot m = \sum_\alpha \dot m_\alpha
(4) A = \sum_\alpha A_\alpha
(5) s_\alpha = A_\alpha/A
(6) \sum_\alpha s_\alpha = 1
(7) u_m = \sum_\alpha s_\alpha \cdot \dot u_\alpha
(8) q_\alpha = \dot m_\alpha / \rho_\alpha = A_\alpha \, u_\alpha \Rightarrow \dot m_\alpha = \rho_\alpha \, A_\alpha \, u_\alpha


For homogeneous pipe flow:  u_\alpha = u_m, \, \forall \alpha \in [1..n] and volumetric shares are going to be:

(9) s_\alpha = \frac{\dot m_\alpha}{\rho_\alpha} \cdot \left( \sum_\beta \frac{\dot m_\beta}{\rho_\beta} \right)^{-1}



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics / Pipe Flow Simulation

Pipe ] [ Pipeline ] [ Pipeline Engineering ]


  • No labels