Page tree

Motivation



The most accurate way to simulate Aquifer Expansion (or shrinkage) is full-field 3D Dynamic Flow Model where Aquifer Expansion is treated as one of the fluid phases and accounts of geological heterogeneities, gas fluid properties, relperm properties and heat exchange with surrounding rocks.

Unfortunately, in many practical cases the detailed information on the aquifer is not available which does not allow a proper modelling of aquifer expansion using a geological framework.

Besides many practical applications require only knowledge of cumulative water influx from aquifer under pressure depletion. 

This allows building an Aquifer Drive Models using analytical methods.


Inputs & Outputs



InputsOutputs

p(t)

field-average formation pressure at time moment t

Q^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

p_i

initial formation pressure

q^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

\sigma

aquifer transmissibility





\chi

aquifer diffusivity

A_e

pay area


Physical Model



Radial Composite Reservoir

Infinite Acting Radial Flow Aquifer
(1) J_{AQ}(t) = \frac{4 \pi \sigma}{ \ln \frac{1.781 \cdot A_e}{ 4 \pi \chi t} }















Fig. 1. Carter-Tracy aquifer drive schematic



Mathematical Model



(2) \frac{d Q_{AQ}}{dt} = J_{AQ}(t) \cdot ( p_i - p(t))
(3) J_{AQ}(t) = \frac{4 \pi \sigma}{ \ln \frac{1.781 \cdot A_e^2}{ 4 \pi \chi t} }


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

Reference


 1.   Fetkovich, M.J. 1971. A Simplified Approach to Water Influx Calculations—Finite Aquifer Systems. J Pet Technol 23 (7): 814–28. SPE-2603-PAhttp://dx.doi.org/10.2118/2603-PA

  • No labels