Page tree


Mathematical model of Gradiomanometer  G_p tool readings.


In case of stationary homogenous isothermal pipeline fluid flow the pressure gradient  G_p can be correlated to volumetric flowrate  q as (see model): 

(1) G_p = G_{p0} + K \cdot q \cdot (1 + (q/q_{\infty})^n)^{1/n}

where

q

volumetric flowrate around the gradiomanometer

G_{p0}

pressure gradient in static fluid column

K

a number defining the pipe flow productivity

q_{\infty}

correction factor for strong-turbulent fluid flow

n

turbulence curvature with default value n=12


Equation  (1) suggests that pressure gradient depends on flowrate:


The model parameters  \{ G_{p0}, \, K, \, q_{\infty} \} should be calibrated in-situ as they strongly depend on fluid type and the location specifics of the tool in a pipe.

The parameter  G_{p0} can be directly measure from static surveys if these are available.

Alternatively it maybe assessed as:

(2) G_{p0} = \rho \, g \, \cos \theta

where

\rho

Fluid density at a given location with pressure p and temperature T

g

standard gravity constant

\cos \theta

correction factor for trajectory deviation


The parameter  K is very sensitive to  in-situ conditions but can be roughly estimated as:

(3) K = \frac{8 \pi \, \mu}{A^2}

where

\mu

dynamic fluid viscosity

A

pipe cross-sectional area


For non-isothermal flow the model parameters  \{ G_{p0}, \, K, \, q_{\infty} \} should be calibrated at different temperature values.


See also


Gradiomanometer

Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model ]




  • No labels