Page tree

@wikipedia


One of mathematical models of Decline Curve Analysis based on the following equations: 

(1) q(t)=q_0 \cdot \exp \left[ -D_{\infty} \cdot \left( t+ a \cdot t^{-n}\right) \right]
(2) D(t) = D_{\infty} \cdot ( 1 + a\cdot (1-n) \cdot t^{-n} )

where

q_0 = q(t=0)

Initial production rate of a well (or groups of wells)

D_{\infty} > 0

the apex value of Production Decrement at infinite time

a

model parameter characterizing deceleration of production decline

n > 0

model parameter characterizing deceleration of production decline

\displaystyle D(t) =- \frac{dq}{dQ}

Production Decrement (the higher the D the stronger is decline)

\displaystyle Q(t)=\int_0^t q(t) dt

cumulative production


DCA Power Law decline is an empirical correlation for production from both finite-reserves  Q_{\rm max} \leq \infty or infinite-reserves  Q_{\rm max} = \infty reservoir. 

The original form of DCA Power Law decline was developed as correction of Arps for tight gas and shales

See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Decline Curve Analysis

DCA Arps @model ] [ Production Decrement ]


Reference



  • No labels