Page tree

@wikipedia


A function f * g of real-number argument t, compiled from the two functions  f(t) and  g(t) by specific integration:

(1) (f * g) (t) = \int_{-\infty}^{\infty} f(t-\tau) \, g(\tau) \, d \tau



For functions  f, \, g supported on only  [0, \infty) (i.e., zero for negative arguments), the integration limits can be truncated, resulting in:

(2) (f * g) (t) = \int_0^t f(t-\tau) \, g(\tau) \, d \tau

Properties



(3) \int_0^t f(t-\tau) \, g(\tau) \, d \tau = \int_0^t f(\tau) \, g(t-\tau) \, d \tau
(4) \int_0^t f(t-\tau) \, \dot h(\tau) d\tau = f(0) h(t) - f(t) h(0) - \int_0^t \dot f(t-\tau) \, h(\tau) \, d\tau

where  \dot g() means derivative by the whole argument.


Discrete form



For the functions  \{ f_n = f(t_n)\}, \ \{ g_n = g(t_n)\}, \ n=1..N defined over the discrete time grid  \{ t_n \}, n = 1..N  the convolution equation is taking the discrete form:

(5) (f * g) (t_n) = \sum_{m=0}^n f(t_n-\tau_m) \, g(\tau_m) \, (t_n - \tau_m)

See also


Formal science / Mathematics


  • No labels