@wikipedia
A function
f * g of real-number argument
t, compiled from the two functions
f(t) and
g(t) by specific integration:
(1) |
(f * g) (t) = \int_{-\infty}^{\infty} f(t-\tau) \, g(\tau) \, d \tau |
For functions
f, \, g supported on only
[0, \infty) (i.e., zero for negative arguments), the integration limits can be truncated, resulting in:
(2) |
(f * g) (t) = \int_0^t f(t-\tau) \, g(\tau) \, d \tau |
Properties
(3) |
\int_0^t f(t-\tau) \, g(\tau) \, d \tau = \int_0^t f(\tau) \, g(t-\tau) \, d \tau |
(4) |
\int_0^t f(t-\tau) \, \dot h(\tau) d\tau = f(0) h(t) - f(t) h(0) - \int_0^t \dot f(t-\tau) \, h(\tau) \, d\tau |
where
\dot g() means derivative by the whole argument.
For the functions
\{ f_n = f(t_n)\}, \ \{ g_n = g(t_n)\}, \ n=1..N defined over the discrete time grid
\{ t_n \}, n = 1..N the convolution equation is taking the discrete form:
(5) |
(f * g) (t_n) = \sum_{m=0}^n f(t_n-\tau_m) \, g(\tau_m) \, (t_n - \tau_m) |
See also
Formal science / Mathematics