Page tree

@wikipedia


Mathematical form of Mass Conservation for continuum body:

Integral formDifferential form
(1) \frac{d}{dt} \iiint_\Omega \rho \, dV = \frac{dm_\Omega}{dt}
(2) \frac{\partial \rho}{\partial t} + \nabla (\rho \, {\bf u}) = \frac{d\rho (t, {\bf r})}{dt}

where

t

time

\rho(t, {\bf r})

continuum body spatial density distribution

{\bf r }

position vector

{\bf u}(t, {\bf r)

continuum body spatial velocity distribution

\Omega

space volume (could be finite or infinite)

\displaystyle \frac{dm_\Omega}{dt}

mass generation rate with the space volume  \Omega

\nabla


gradient operator


\displaystyle \frac{d\rho(t, {\bf r})}{dt}

volume-specific mass generation rate at a given point in space {\bf r }


For the specific case of stationary process when density is not explicitly dependent on time:

(3) \frac{\partial \rho}{\partial t} = 0 \rightarrow \nabla (\rho \, {\bf u}) = 0


For the specific case of finite number of mass generation locations the differential equation (2) takes form:

(4) \frac{\partial \rho}{\partial t} + \nabla (\rho \, {\bf u}) =   \sum_k \dot m_k(t) \cdot \delta({\bf r}-{\bf r}_k)

where

{\bf r }_k

position vector of the k-th source/sink

\dot m_k(t)

mass generation rate at k-th source/sink: \displaystyle \dot m_k(t) = \frac{dm_k}{dt}

\delta ( \bf r )

Dirac delta function


Alternatively it can be written as:

(5) \frac{\partial \rho}{\partial t} + \nabla (\rho \, {\bf u}) =   \sum_k \rho(t, {\bf r}) \cdot \dot q_k(t) \cdot \delta({\bf r}-{\bf r}_k)

wehre

q_k(t)

volumetric value of body mass generation rate at k-th source/sink: \displaystyle q_k(t) = \frac{dV_k}{dt}

See also


Natural Science / Physics / Mechanics / Continuum mechanics 

[ Mass Conservation ]




  • No labels