(1) | \mbox{erfc}(x) = 1- erf(x) = \frac{1}{\sqrt{\pi}} \, \int_x^{\infty} e^{-\zeta^2} d \zeta |
Fig. 1. Erfc(x) sample graph for the real argument x \in \mathbb{R} |
(1) | \mbox{erfc}(x) = 1- erf(x) = \frac{1}{\sqrt{\pi}} \, \int_x^{\infty} e^{-\zeta^2} d \zeta |
Fig. 1. Erfc(x) sample graph for the real argument x \in \mathbb{R} |