Page tree


Empirical explicit correlation for Darcy friction factor  f  in non-smooth pipelines  \epsilon > 0 which works for all pipe flow regimes with up to 2 % accuracy:


(1) f = \frac{64}{\rm Re} \cdot \Phi
(2) \Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a} \cdot \left( 0.75 \cdot \ln \frac{{\rm Re}}{5.37} \right)^{-2 \,(1-a)\,b} \cdot \left( 0.83 \cdot \ln \frac{3.41}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
(3) a = \left[ 1+ \left( \frac{{\rm Re}}{2712} \right)^{8.4} \right]^{-1}
(4) b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{150} \right)^{1.8} \right]^{-1}

where

{\rm Re}

Reynolds number of a pipe fluid flow

d

Inner diameter of a pipe

\epsilon

inner pipe walls roughness



See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor / Darcy friction factor @model

Surface roughness ]

Reference


Moody’s Friction Factor Calculator @ gmallya.com

Vasilis Bellos; Ioannis Nalbantis; and George Tsakiris, Friction Modeling of Flood Flow Simulations , J. Hydraul. Eng., 2018, 144(12): 04018073, doi.org/10.1061/(ASCE)HY.1943-7900.0001540






  • No labels