Page tree

@wikipedia


Motivation



Ideal Gas Static Vertical Pressure Variation


Output


p(z)

Fluid pressure  p 


Input


z

\rho_0

Fluid density at Logging reference point  z_0

z_0

Logging reference point (usually at surface)

c_0

Fluid Compressibility at Logging reference point  z_0

g

Standard gravity constant


Equation


(1) p(z) = p_0 \cdot \exp \left[ - \frac{\rho_0 \, g}{p_0} \cdot (z-z_0) \right]

where

z


p_0

Gas pressure at Logging reference point  z_0

z_0

Logging reference point (usually at surface) \rho_0


Gas density at Logging reference point  z_0

g

Standard gravity constant c_0


Gas Compressibility at Logging reference point  z_0

Alternative form


(2) p(z) = p_0 \cdot \exp \left[ - \frac{M }{R \, T} \cdot (z-z_0) \right]

where

z

p_0

Gas pressure at Logging reference point  z_0

z_0

Logging reference point (usually at surface)

M

g

Standard gravity constant

T



R

Gas constant


Following Ideal Gas Equation of State:

(3) \frac{\rho_0}{p_0} =\frac{M}{R \, T}


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Statics

Fluid Dynamics ]









  • No labels