Page tree

Total time required for seismic wave to travel through the rock towards the seismic receiver:

T_x = \int_0^{L_x} \frac{dl}{V_p(l)}

where 

\{ x, \, y, \, z \} is cartesian coordinates in 3D space with  x-axis aligned between seismic source and seismic sensor,  y-axis is traversal to  x-axis and  z-axis is oriented towards Earth centre, 

x is a lateral offset between the seismic source and seismic receiver

l(x,y,z) – trajectory of reflection wave from seismic source @  (x = 0, \, y = 0, \, z = 0) and seismic receiver @  (x, \, y = 0, \, z = 0)

dl = \sqrt{dx^2 + dy^2 + dz^3} is differential element of the distance along the reflection travel trajectory,

V_p(l) is p-wave velocity of rocks found at travel point  l.


Two Way Time Illustration


In relatively simple geological structures the travel time can be approximated by a Dix equation:

(1) T^2_x = T^2_0 + \frac{4 x^2}{V^2_{rms}}

where  T^2_0 is reflection time at zero offset (which means the normal incident wave reflection):

T_0 = 2 \cdot \int_0^H \ \frac{\delta z}{V_p(z)}

where  H is the depth of the reflecting boundary,

V_{rms} – average p-wave velocity through the reflecting travel distance  between the seismic source and seismic receiver:

V^2_{rms} = \frac{\sum_i^N V_p^2(t_i) \, \delta t_i}{\sum_i^N \delta t_i}= \frac{\sum_i^N V_p(t_i) \, \delta h_i}{\sum_i^N \frac{\delta h_i}{V_p(t_i)}}

where 

V_p(t_i) is p-wave velocity of rocks found at travel time  t_i

\delta t_i is travel time through the rock element of thickness  \delta h_i in tghe rock element found at travel time  t_i.

  • No labels