Travel Time (of seismic wave)

Total time required for seismic wave to travel through the rock towards the seismic receiver:

$$T_x = \int_0^{L_x} \frac{dl}{V_n(l)}$$

where

 $\{x, y, z\}$ is cartesian coordinates in 3D space with x-axis aligned between seismic source and seismic sensor, y-axis is traversal to x-axis and z-axis is oriented towards Earth centre,

x is a lateral offset between the seismic source and seismic receiver

l(x, y, z) – trajectory of reflection wave from seismic source @ (x = 0, y = 0, z = 0) and seismic receiver @ (x, y = 0, z = 0)

 $dl = \sqrt{dx^2 + dy^2 + dz^3}$ is differential element of the distance along the reflection travel trajectory,

 $V_p(l)$ is p-wave velocity of rocks found at travel point l.

blocked URL

In relatively simple geological structures the travel time can be approximated by a Dix equation:

(1)
$$T_x^2 = T_0^2 + \frac{4x^2}{V_{rms}^2}$$

where T_0^2 is reflection time at zero offset (which means the normal incident wave reflection):

$$T_0 = 2 \cdot \int_0^H \frac{\delta z}{V_p(z)}$$

where H is the depth of the reflecting boundary,

 V_{rms} – average p-wave velocity through the reflecting travel distance between the seismic source and seismic receiver:

$$V_{rms}^{2} = \frac{\sum_{i}^{N} V_{p}^{2}(t_{i}) \, \delta t_{i}}{\sum_{i}^{N} \delta t_{i}} = \frac{\sum_{i}^{N} V_{p}(t_{i}) \, \delta h_{i}}{\sum_{i}^{N} \frac{\delta h_{i}}{V_{p}(t_{i})}}$$

where

 $V_p(t_i)$ is p-wave velocity of rocks found at travel time t_i ,

 δt_i is travel time through the rock element of thickness δh_i in the rock element found at travel time t_i .