Page tree

@wikipedia


The rate of change of temperature   {\displaystyle T} with respect to pressure  {\displaystyle P} in a throttling process:

(1) \epsilon_{JT} = \left( \frac{\partial T}{\partial P} \right)_{H} = \frac{\alpha_V \cdot T - 1}{c_{vp}}

where

T

Temperature

\alpha_V

Thermal expansion coefficient

c_{vp}

Isobaric volumetric heat capacity


For the Ideal Gas\alpha_V = \frac{1}{T} and  Joule–Thomson coefficient is strictly zero:  \epsilon_{JT} = 0.

In case of general Fluid\alpha_V = \alpha_V (T) and the temperature  T_{\rm inv} where  T_{\rm inv} \cdot \alpha_V(T_{\rm inv}) = 1 is called Inversion Temperature.

The Fluid above Inversion Temperature  T > T_{\rm inv} has negative Joule–Thomson coefficient   \epsilon_{JT} <0 and hence will be cooling under expansion ( \delta P > 0).

The Fluid below Inversion Temperature  T < T_{\rm inv} has positive Joule–Thomson coefficient   \epsilon_{JT} >0 and hence will be warming under expansion ( \delta P > 0).

See also


Physics / Thermodynamics / Thermodynamic process / Throttling Temperature Effect


  • No labels