\frac{\partial (\rho_A \, \phi) }{\partial t} + \nabla (\rho_A \, {\bf u}_A) = 0, \quad A = \{ O, G, W \}
\int_V \, \frac{\partial (\rho_A \, \phi) }{\partial t} \, dV = - \int_V \, \nabla (\rho_A \, {\bf u}_A) \, dV = - \int_{\partial V} \, \rho \, {\bf u}_A \, d {\bf A}
V \cdot \delta (\rho_A \, \phi) = \delta \, m_A \Rightarrow V \cdot \delta \left( \phi \, \sum_\alpha \rho_{A,\alpha} \, s_\alpha \right) = \mathring{\rho}_A \cdot \delta \, q_A, \quad \alpha = \{ o, g, w \}
 \Rightarrow \delta \left( \phi \, \sum_\alpha \frac{\rho_{A,\alpha}}{\mathring{\rho}_A} \, s_\alpha \right) =  V^{-1} \cdot \delta \, q_A  \Rightarrow \delta \left( \phi \, \sum_\alpha \frac{\mathring{V}_{A,\alpha}}{V_\alpha} \, s_\alpha \right) =  V^{-1} \cdot \delta \, q_A
 \delta \left( \phi \, \sum_\alpha \frac{\mathring{V}_{A,\alpha}}{V_\alpha} \, s_\alpha \right) =  V^{-1} \cdot \delta \, q_A


MBO fluid:

 \xi_{A, \alpha} = \frac{\mathring{V}_{A,\alpha}}{V_\alpha} 
\xi_{O, o} = \frac{\mathring{V}_{O, o}}{V_o} = \frac{1}{B_o}



 \xi_{O, g} = \frac{\mathring{V}_{O, g}}{V_g} =
\frac{\mathring{V}_{O, o}}{\mathring{V}_{G, g}} \cdot \frac{\mathring{V}_{G, g}}{V_g}
= \frac{R_s }{B_g}
 \xi_{G, o} = \frac{\mathring{V}_{G, o}}{V_o} = \frac{\mathring{V}_{G, o}}{\mathring{V}_{O, o}} \cdot \frac{\mathring{V}_{O, o}}{V_o} =\frac{R_s }{B_o}
\xi_{G, g} = \frac{\mathring{V}_{G, g}}{V_g} = \frac{1}{B_g}
\xi_{W, w} = \frac{\mathring{V}_{W, w}}{V_w} = \frac{1}{B_w}




Next step is to write the equations explicitly for MBO fluid.
















normalized porosity

cumulative gas influx from Gas Cap Expansion

 

initial effective porosity



cumulative water influx from Aquifer Expansion




Initial water saturation

Oil and Gas Recovery Factor