s_w \, V_{mw} \cdot \frac{(\epsilon -1)(2\epsilon+1)}{9\epsilon} + \left( s_o \, V_{mo} + s_g \, V_{mg} \right) \cdot \frac{\epsilon-1}{\epsilon+2} = P = s_w P_w + s_o P_g + s_g P_g
P_w = V_{mw} \cdot \frac{(\epsilon_w-1)(2\epsilon_w+1)}{9 \, \epsilon_w}
P_o(T) = V_{mw} \cdot \frac{\epsilon_o-1}{\epsilon_o+2}
P_g(T) = V_{mw} \cdot\frac{\epsilon_g-1}{\epsilon_g+2}
\epsilon_w(T) = 87.74 - 0.40008 \cdot T + 9.398 \cdot  10^{-4} \cdot T^2
- 1.41  \cdot  10^{-6} \cdot T^3
\epsilon_o(T) = 3
\epsilon_o(T) = 2

where

volumetric fractions of water, oil and gas phases: 

electrical polarization of water, oil and gas phases

relative dielectric permittivity of water, oil and gas phases

fluid temperature


See also


Petroleum Industry /  Upstream / Subsurface E&P Disciplines / Fluid Analysis / Fluid Capacitance

Dielectric permittivity of water @model ]


References


https://www.dropbox.com/s/7haygqxdc7bzmu9/Harvey-Lemmon-50062.pdf?dl=0

https://www.dropbox.com/s/eu7ny3mzm2qw9l4/JPSE-May-PVT.pdf?dl=0