Fig. 1. Dual-layer well schematic




q = q_1 + q_2




p_{wf} = p_e - q/J



J = J_1 + J_2



p_e = \frac{J_1 \cdot p_1 + J_2 \cdot (p_2- \delta p_2)}{J_1 + J_2}


where

Well

total subsurface flowrate of the well

total well productivity Index

apparent formation pressure of dual-layer formation

wellbore pressure loss between the tips of two layers

true vertical height between the layers tops

wellbore fuid density

gravity constant
Layer #1

bottom-hole pr4essure at Layer #1 top

total subsurface flowrate of the Layer #1

formation pressure of the Layer #1

productivity Index of the Layer #1
Layer #2

bottom-hole pr4essure at Layer #2 top

total subsurface flowrate of the Layer #2

formation pressure of the Layer #2

productivity Index of the Layer #2


In many practical cases:

\delta p_2 = \rho \, g \, h

where

wellbore fuid density

gravity constant

true vertical height between -th layer and reference layer 


The above equations are valid for both producers and injectors.



p_{wf} = p_1 - q_1/J_1


p_{wf,2} = p_2 - q_2/J_2


p_{wf2} = p_{wf} + \delta p_2

This leads to

p_1 - q_1/J_1 = p_2 - \delta p_2 - q_2/J_2




See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Subsurface E&P Disciplines / Field Study & Modelling / Production Analysis / Productivity Diagnostics

Production Technology / Well Flow Performance ]

Formation pressure (Pe) ] Multi-layer IPR ]