Fig. 1. Dual-layer well schematic




q = q_1 + q_2




p_{wf} = p_e - q/J



J = J_1 + J_2



p_e = \frac{J_1 \cdot p_1 + J_2 \cdot (p_2- \delta p_2)}{J_1 + J_2}


where

Well

total subsurface flowrate of the well

total well productivity Index

apparent formation pressure of dual-layer formation
Layer #1

bottom-hole pressure at Layer #1 top

total subsurface flowrate of the Layer #1

formation pressure of the Layer #1

productivity Index of the Layer #1
Layer #2

bottom-hole pr4essure at Layer #2 top

wellbore pressure loss between the tips of two layers

total subsurface flowrate of the Layer #2

formation pressure of the Layer #2

productivity Index of the Layer #2


In many practical cases one can safely assume:

\delta p_2 = \rho \, g \, h

where

wellbore fuid density

gravity constant

true vertical height between -th layer and reference layer 


The above equations are valid for both producers  and injectors .




p_{wf, 1} = p_{wf} = p_1 - q_1/J_1


p_{wf,2} = p_{wf} + \delta p_2 = p_2 - q_2/J_2


This leads to

q_1 = J_1 \cdot (p_1 - p_{wf})


q_2 = J_2 \cdot (p_2 - p_{wf,2}) = J_2 \cdot ((p_2-\delta p_2)- p_{wf})

and

q = q_1 + q_2 = q_1 = J_1 \cdot (p_1 - p_{wf})+ J_2 \cdot ((p_2-\delta p_2)- p_{wf})


q =  - (J_1+J_2)\cdot  p_{wf} + J_1 \cdot p_1 + J_2 \cdot (p_2-\delta p_2)

or

q =  J \cdot (p_e - p_{wf}), \ {\rm where} \ J = J_1 + J_2 \ {\rm and} \ p_e = J^{-1} \cdot (J_1 \cdot p_1 + J_2 \cdot (p_2-\delta p_2))



See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Subsurface E&P Disciplines / Field Study & Modelling / Production Analysis / Productivity Diagnostics

Production Technology / Well Flow Performance ]

Formation pressure (Pe) ] Multi-layer IPR ]