The general form of objective function  for production targets optimisation is given by:

G(t) = \sum_{k=1}^{N^{\uparrow}_P} \left[ R_O \cdot q^{\uparrow}_{O, k} + R_G \cdot  q^{\uparrow}_{G, k} \right] 
- \sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{L,k} \cdot q^{\uparrow}_{L, k}
- \sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{O,k} \cdot q^{\uparrow}_{O, k} 
- \sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{G,k} \cdot q^{\uparrow}_{G, k} 
- \sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{W,k} \cdot q^{\uparrow}_{W, k}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j} \rightarrow \rm max

where

volume/day

oil production rate for -th producer

cash/volume

cost of produced oil treatment and transportation from -th wellhead to CMS

cash/volumeoil selling price

volume/day

gas production rate for -th producer

cash/volume

cost of produced gas treatment and transportation from -th wellhead to CMS

cash/volumegas selling price

volume/day

water production rate for -th producer

cash/volume

cost of produced water treatment and transportation from -th wellhead to CMS

counts

number of producers at 

volume/day

liquid production rate for -th producer

cash/volume

cost of fluid lift from reservoir to the -th wellhead, cash/volume

counts

number of water injectors at 

volume/day

water injection rate for -th water injector

cash/volume

cost of water injection, including purchase, treatment, transportation and pumping into -th well

counts

number of gas injectors at 

volume/day

gas injection rate for -th gas injector

cash/volume

cost of gas injection, including purchase, treatment, transportation and pumping into -th well

monthstime


Left part of equation  can be rewritten in terms of Sandface flowrates:

G = \sum_{k=1}^{N^{\uparrow}_P} G^{\uparrow}_{t,k} \cdot q^{\uparrow}_{t, k}
- \sum_{i=1}^{N^{\downarrow}_W} G^{\downarrow}_{w,i}  \cdot 
q^{\downarrow}_{w, i}
- \sum_{j=1}^{N^{\downarrow}_G} G^{\downarrow}_{g,j}  \cdot q^{\downarrow}_{g, j} \rightarrow \rm max


G^{\uparrow}_{t,k} = \frac{\left[  (R_O -  C^{\uparrow}_{O,k}) + (R_G - C^{\uparrow}_{G,k}) \cdot  Y_{g,k} \right]  \cdot (1- Y_{w,k}) 
- C^{\uparrow}_{L,k} - C^{\uparrow}_{W,k} \cdot Y_{w,k} }
{B_{w,k} Y_{w,k} + \left[ (B_{o,k} - R_{s,k} B_{g,k}) + (B_{g,k} - R_{v,k} B_{o,k}) \, Y_{g,k} \right] \cdot (1-Y_{w,k})}


G^{\downarrow}_{w,i} = B_{w,i} C^{\downarrow}_{W,i} 


G^{\downarrow}_{g,i} = B_{g,i} \cdot C^{\downarrow}_{G,i}


where

Water FVF for -th well

BHPin -th well

Watercut in -th well

Oil FVF for -th well

 Solution GOR in -th well

Gas-Oil Ratio in -th well

Gas FVF for -th well

 Vaporized Oil Ratio in -th well







G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
(R_O -  C^{\uparrow}_{O,p}) \cdot q^{\uparrow}_{O, p} + (R_G - C^{\uparrow}_{G,p}) \cdot  q^{\uparrow}_{G, p} 
- C^{\uparrow}_{L,p}  - C^{\uparrow}_{W,p} \cdot q^{\uparrow}_{W, p}
\right]  
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}


G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{g,p} \right]  \cdot q^{\uparrow}_{O, p} 
- C^{\uparrow}_{L,p}  - C^{\uparrow}_{W,p} \cdot Y_{w,p} \cdot q^{\uparrow}_{L, p}
\right]  
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}


G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{g,p} \right]  \cdot (1- Y_{w,p}) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p} 
\right]  \cdot q^{\uparrow}_{L, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}

Translating  and  to Sandface flowrates  and  with formation volume factor and substituting liquid production rate  from  one arrives to:

G(t) = \sum_{p=1}^{N^{\uparrow}_P}  \frac{\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{g,p} \right]  \cdot (1- Y_{w,p}) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p} }
{B_w Y_{w,p} + \left[ (B_o - R_s B_g) + (B_g - R_v B_o) \, Y_{g,p} \right] \cdot (1-Y_{w,p})}
 
 \cdot q^{\uparrow}_{t, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot B_w \cdot q^{\downarrow}_{w, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot B_g \cdot q^{\downarrow}_{g, j}

which is equivalent to .



The rates in equation  may be set directly or calculated from the preset of THP (which is a usual practice in injection wells):

Assuming constant productivity index at each time step equation  can be rewritten in terms of formation pressure  and botomhole pressure 

q^{\uparrow}_{t, k} = J_{t,k} \cdot ( p_{e,k} - p_{wf,k} )


G^{\downarrow}_{w,i} = J_{w,i} \cdot ( p_{w,i} - p_{e,i} )


G^{\downarrow}_{g,i} = J_{g,i} \cdot ( p_{g,i} - p_{e,i} )


See Also


Petroleum Industry / Upstream / Production / Field Development Plan

Subsurface Production / Well & Reservoir Management / [ Production Targets ]

Subsurface E&P Disciplines / Production Technology