Motivation




Inputs & Outputs



InputsOutputs

Cumulative subsurface water influx from aquifer

initial formation pressure

Subsurface water flowrate from aquifer

water influx constant





aquifer diffusivity

net pay area



Detailing Inputs

water influx constant

central angle of net pay area ↔ aquifer contact

aquifer effective thickness

aquifer porosity

aquifer total compressibility

aquifer pore compressibility 

aquifer water compressibility



Assumptions



Transient flow in Radial Composite Reservoir

Fig. 1. VEH aquifer drive schematic



Equations



Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD}(t - \tau) \dot p d\tau



q^{\downarrow}_{AQ}(t)= \frac{dQ^{\downarrow}_{AQ}}{dt}




W_{eD}(t)= \int_0^{t} \frac{\partial p_1}{\partial r_D} \bigg|_{r_D = 1} dt_D 







\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}



p_1(t_D = 0, r_D)= 0



p_1(t_D, r_D=1) = 1




\frac{\partial p_1}{\partial r_D} 
\bigg|_{(t_D, r_D=r_a/r_e)} = 0






Transient flow in Radial Composite Reservoir:


\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]



p_a(t = 0, r)= p(0)



p_a(t, r=r_e) = p(t)



\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0



Consider a pressure convolution:


p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi_a}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau



\dot p(\tau) = \frac{d p}{d \tau}



One can easily check that honors the whole set of equations and as such defines a unique solution of the above problem.

Water flowrate within sector angle at interface with oil reservoir will be:

q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot u(t,r_e)

where is flow velocity at aquifer contact boundary, which is:

u(t,r_e) = M_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
 

where is aquifer mobility.

Water flowrate becomes:

q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot M_a \cdot  \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


Cumulative water flux:

Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = \theta \cdot r_e \cdot h_a \cdot M_a  \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt


Q^{\downarrow}_{AQ}(t) =  \theta \cdot r_e \cdot h_a \cdot M_a \cdot   \int_0^t  \frac{1}{r_e} \frac{\partial p_a(t \cdot \frac{r_e^2}{\chi_a},R_E \cdot r_D)}{\partial r_D} \bigg|_{r=r_e} \frac{r_e^2}{\chi_a} dt_D = \theta  r_e^2 \cdot h_a \cdot c_t \phi  \cdot \int_0^t  \frac{\partial p_a(t \cdot \frac{r_e^2}{\chi_a},r_e \cdot r_D)}{\partial r_D} \bigg|_{r_D=1}  dt_D = B \cdot \int_0^t  \frac{\partial p_a(t \cdot \frac{r_e^2}{\chi_a},r_e \cdot r_D)}{\partial r_D} \bigg|_{r_D=1}  dt_D 

Substituting into leads to:

Q^{\downarrow}_{AQ}(t) = \theta  \cdot r_e^2 \cdot h_a \cdot c_t  \cdot \phi  \cdot 
\int_0^t  \left[ int_0^{(t-\tau)r_e^2/\chi_a} \frac{\partial p_a(t \cdot \frac{r_e^2}{\chi_a},r_e \cdot r_D)}{\partial r_D} \bigg|_{r_D=1} \right]  dt_D 






See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models


Reference


 1. van Everdingen, A.F. and Hurst, W. 1949. The Application of the Laplace Transformation to Flow Problems in Reservoirs. Trans., AIME 186, 305.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)

3. Klins, M.A., Bouchard, A.J., and Cable, C.L. 1988. A Polynomial Approach to the van Everdingen-Hurst Dimensionless Variables for Water Encroachment. SPE Res Eng 3 (1): 320-326. SPE-15433-PA. http://dx.doi.org/10.2118/15433-PA