@wikipedia


Momentum equation for Inviscid fluid flow (a partial case of Navier–Stokes equation):

\frac{\partial {\bf u}}{\partial t} + ({\bf u} \cdot \nabla) {\bf u} =
- \frac{1}{\rho} \, \nabla p + {\bf g} +\frac{1}{\rho} \cdot {\bf f}_{\rm cnt}

where

fluid velocity

fluid density

fluid kinematic viscosity

resulting specific body force exerted on fluid body

volumetric density of all contact forces exerted on fluid body

Approximations




Transient 1D Inviscid fluid flow


\rho \left(  \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial l} \right)=
-\frac{\partial p}{\partial l}  + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}



Steady-state 1D inviscid fluid flow



\frac{d p}{d l} =
-\rho \, u \, \frac{d u}{d l}  + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}



Bernoulli equation =
Steady-state 1D inviscid fluid flow of incompressible fluid with no friction


\frac{p(l)}{\rho} +  \frac{u^2}{2} -  g \cdot z(l)   = \rm const



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid flow / Navier–Stokes equation

Bernoulli equation ]