@wikipedia

Disclaimer: Not to be confused with Compressibility factor .


A measure of relative change in density  or  molar volume   under a unit pressure  variation:

\beta = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial p} \right) = - \frac{1}{V_m} \left( \frac{\partial V_m}{\partial p} \right)
SymbolDimensionSI unitsOil metric unitsOil field units

 or 

M-1 L1 T2Pa-1kPa-1

psi-1


Compressibility measures resistance of Continuum body to compression/decompression and is inverse to Bulk modulus :

c = \frac{1}{K}


Compressibility depends on the thermodynamic conditions at which it is measured and as such is not a material property.

The two major medium compression/decompression processes are isothermal and isentropic which result in different values of compressibility:

Isothermal CompressibilityIsentropic Compressibility

\beta_T = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial p} \right)_T
\beta_S = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial p} \right)_S


Both  and  are not dependent on the amount of chemical substance and defined under specific conditions of thermodynamic process and as such are the material properties and properly tabulated for the vast majority of materials.

In engineering practise, when the term Compressibility is used as material property it normally means Isothermal Compressibility.


Compressibility is related to Z-factor 
 and Formation Volume Factor (FVF)  as:

\beta(p) = \frac{1}{p} - \frac{1}{Z} \frac{dZ}{dp}
\beta(p) =  - \frac{1}{B} \frac{dB}{dp}


In Thermodynamics the compressibility is denoted by  while intensive heat capacities are denoted by  with corresponding subscript. 

On the other hand Petroleum Industry is traditionally using   symbol to denote compressibility which often lead to confusion with heat capacity.


See also


Physics / Mechanics / Continuum mechanics /  Continuum body

Isothermal Compressibility ][ Isentropic Compressibility ]

[Fluid compressibility] [Pore compressibility] [Total compressibility]

Bulk modulus (K or B)