Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »

Pressure derivative with respect to natural logarithm of time aka Bourdet derivative is defined as follows:

(1) P'=\frac{dP}{d\ln t}

The calculation algorithm uses the weighted slopes  \Delta P/\Delta X of the pressure change versus the change in time:

(2) \begin {equation} \left( \frac{dP}{dX} \right)_j=\frac{\displaystyle\frac{\Delta P_1}{\Delta X_1} \Delta X_2 + \displaystyle\frac{\Delta P_2}{\Delta X_2}\Delta X_1}{\Delta X_1 + \Delta X_2}, \end {equation}

where  \Delta P_1 = P_j - P_{j-1},  \Delta P_2 = P_{j+1} - P_j are the functions of the pressure change with respect to the point of interest and  \Delta X_1 = X_j - X_{j-1} \Delta X_2 = X_{j+1} - X_{j} are the functions of the change in time.

Modified Time Function

For buildup analysis, the Horner time modified by Agarwal is used:

(3) \^t=\frac{t_p \cdot t}{t_p+t},

where  t_p is duration of time the well produced at constant rate. So, the time function is

(4) X=\ln{\^t}.

Superposition Time Function

In case the well produced at variable rate before shut-in, the superposition time function is used:

(5) X = \displaystyle \sum\limits_{i=1}^{n-1} \frac{q_i}{\^q_n}\,\ln\displaystyle\frac{t - t_i} {t - t_{i + 1}} + \frac{q_n}{\^q_n} \cdot \ln(t - t_n),

where  q_{n} is the rate before shut-in,  \displaystyle \^q_{n} = \begin{cases} q_{n+1}, & \text n=1\\ q_{n+1} - q_{n}, & \text n>1 \end{cases} is the modified rate.

Points per Cycle

Suppose  N is the number of data points,  n is the number of points per logarithmic cycle, and  X_{j} is the  j-th data point, j=1,2,...,N. If inequality  X_{j+k}-X_j<\displaystyle \frac{1}{10^{n+1}},  where  k=1,2,3,..., is valid, then points  X_{j+k} are removed.

L-spacing

In order to smooth the derivative, the so-called 'L-spacing' method is applied. Suppose the smoothing parameter  L is given. For every  j=2\dots N-1 there exist points  m=j-k_1 and  n=j+k_2 such that  X_n-X_j\gt L and  X_j-X_m \gt L .  Thus, the logarithmic derivative formula changes to:

(6) \begin {equation} \^{\left( \frac{dP}{dX} \right)_j}=\frac{\displaystyle\frac{\Delta \^{P_1}}{\Delta \^{X_1}} \Delta \^{X_2} + \displaystyle\frac{\Delta \^{P_2}}{\Delta \^{X_2}}\Delta \^{X_1}}{\Delta \^{X_1} + \Delta \^{X_2}}, \end {equation}

where  \Delta \^{P_1} = P_j - P_{m} \Delta \^{P_2} = P_{n} - P_j,   \Delta \^{X_1} = X_j - X_{m} \Delta \^{X_2} = X_{n} - X_{j}. In practice, it is recommended to choose L between 0 and 0.5.

Fig. 1 – Calculation scheme for logarithmic derivative subject to L-spacing.


See also


Formal science / Mathematics / Calculus

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing / Pressure Transient Analysis (PTA) /  PTA Diagnostic Plot / Logarithmic Derivative

References


  1. Bourdet, D. "Well Test Analysis: The Use of Advanced Interpretation Models", Elsevier, 2002.
  2. Bourdet, D., Ayoub, J.A., and Pirard, Y.M. "Use of Pressure Derivative in Well-Test Interpretation", SPE Formation Evaluation, 1989, June, pp. 293-302.




  • No labels