Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 142 Next »

Modelling facility for field-average formation pressure  p(t) at any time moment  t as response to production flowrates history:

(1) \phi_n(p) = \frac{B_o - R_s \, B_g}{1- R_s \, R_v} \cdot F_O +\frac{ B_g - R_v \, B_o}{1- R_s \, R_v} \cdot F_G +B_w \, F_W
(2) \phi_n = \exp \left[ c_\phi \, (p-p_i) \right] \approx 1 + c_\phi \, (p-p_i) + 0.5 \, c^2_\phi \, (p-p_i)^2
(3) F_O = V_e^{-1} \, \delta \, Q_O + \left[ \frac{s_{oi}}{B_{oi}} + \frac{R_{vi}\, s_{gi}}{B_{gi}}\right]
(4) \delta \, Q_O = - Q^{\uparrow}_O
(5) F_G = V_e^{-1} \, \delta \, Q_G + \left[ \frac{R_{si}\, s_{oi}}{B_{oi}} + \frac{ s_{gi}}{B_{gi}}\right]
(6) \delta \, Q_G = Q^{\downarrow}_G - Q^{\uparrow}_G + Q^{\downarrow}_{GCAP}
(7) F_W = V_e^{-1} \, \delta \, Q_W + \frac{ s_{wi}}{B_{wi}}
(8) \delta \, Q_W = Q^{\downarrow}_W - Q^{\uparrow}_W + Q^{\downarrow}_{WAQ}

where

p_i

initial formation pressure: p_i = p(0)

Q^{\uparrow}_O(t)

Cumulative oil production by the time moment t

V_e = V \cdot \phi_i

initial drainage volume of Main Pay (excluding the aquifer and gas cap)

Q^{\uparrow}_G(t)

Cumulative gas production by the time moment t

\phi_i = \phi(p_i)

Q^{\uparrow}_W(t)

Cumulative water production by the time moment t

c_\phi

pore compressibility 

Q^{\downarrow}_W(t)

Cumulative water injection by the time moment t

s_{wi}

initial water saturation

Q^{\downarrow}_G(t)

Cumulative gas injection by the time moment t

s_{gi}

Q^{\downarrow}_{WAQ}(t)

Cumulative water influx from Aquifer Expansion by the time moment t

s_{oi}

initial oil saturation: s_{oi} = 1 - s_{wi} - s_{gi}

Q^{\downarrow}_{GCAP}t)

Cumulative gas influx from Gas Cap expansion by the time moment t





B_o(p)

R_s(p)

B_g(p)

R_v(p)

B_w(p)




The MatBal equation  (1) is often complemented by constant PI model of Bottom-Hole Pressure ( p^{\uparrow}_{wf}(t) for producers and  p^{\downarrow}_{wf}(t) for injectors):

(9) p^{\uparrow}_{wf, k}(t) = p(t) - {J^{\uparrow}_k}^{-1} \cdot \frac{dQ^{\uparrow}_k}{dt}
(10) p^{\downarrow}_{wf, \, j}(t) = p(t) - {J^{\downarrow}_j}^{-1} \cdot \frac{dQ^{\downarrow}_j}{dt}
wherewhere

p^{\uparrow}_{wf, \, k}(t)

BHP in k-th producer

p^{\downarrow}_{wf, \, j}(t)

BHP in j-th injector

Q^{\uparrow}_k(t)

cumulative offtakes from k-th producer by the time moment t

Q^{\downarrow}_j(t)

cumulative intakes to j-th injector by the time moment t

J^{\uparrow}_k

productivity index of k-th producer

J^{\downarrow}_j

injectivity Index of j-th injector


In practice there is no way to measure the external influx  Q^{\downarrow}_{GC}(t) and  Q^{\downarrow}_{AQ}(t) so that one need to model them and calibrate model parameters to fit available data on production flowrates history and formation pressure data records. 

There is a list of various analytical Aquifer Drive and  Gas Cap Drive models which are normally related to pressure dynamics p(t):

Gas Cap Drive @model Aquifer Drive @model
(11) Q^{\downarrow}_{GC}(t) = Q^{\downarrow}_{GC}(p(t))
(12) Q^{\downarrow}_{AQ}(t) = Q^{\downarrow}_{AQ}(p(t))

which closes equation  (1) for the pressure  p(t).

Approximations


In some specific cases equation  (1) can be explicitly integrated:

Low pressure dry gas

\{ \phi_e = {\rm const}, \ c_t = {\rm const} \}

c_t = c_r + \frac{1}{p} \sim \frac{1}{p}

(13) p(t) = p_i + \frac{\Delta Q(t)}{V_e \cdot c_t}
(14) p(t) = p_i \exp \left[ \frac{\Delta Q(t)}{V_e} \right]

The above approximations sometime allow using simple graphical methods for rough estimation of drainage volume  V_e and associated Hydrocarbon Reserves.


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Material Balance Analysis (MatBal)

Material Balance Pressure Plot ][ FMB Pressure @model]

[ Derivation of Material Balance Pressure @model ]






  • No labels