Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 11 Next »

Consider a system of net hydrocarbon pay and finite volume Aquifer as a radial composite reservoir with inner composite area being a Net Pay Area and outer composite area an Aquifer

(see schematic and notations on Fig. 1 at Radial VEH Aquifer Drive @model).

The Aquifer's outer boundary may be "no-flow" or full pressure support, thus implementing the case of the infinite-volume Aquifer.

The transient pressure diffusion in the outer (Aquifer) composite area is going to honour the following equation:

(1) \frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]
(2) p_a(t = 0, r)= p(0)
(3) p_a(t, r=r_e) = p(t)
(4) \frac{\partial p_a}{\partial r} \bigg|_{(t, r=r_a)} = 0

or 

(5) p_a(t, r = \infty) = 0


Consider dimensionless solution  p_1(t_D, r_D) of the following equation:

(6) \frac{\partial p_1}{\partial t_D} = \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}
(7) p_1(t_D = 0, r_D)= 0


(8) p_1(t_D, r_D=1) = 1
(9) \frac{\partial p_1(t_D, r_D)}{\partial r_D} \Bigg|_{r_D=r_{aD}} = 0

or

(10) p_1(t_D, r_D = \infty) = 0

which represents a specific function of dimensionless time t_D and distance r_D.


Now consider a convolution integral:

(11) p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau
(12) \dot p(\tau) = \frac{d p}{d \tau}


One can easily check that (11) honours the whole set of equations (1)(4) and as such defines a unique solution of the above problem.

Water flowrate within \theta sector angle at interface with oil reservoir will be:

(13) q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h \cdot u(t,r_e)

where u(t,r_e) is flow velocity at aquifer contact boundary, which is:

(14) u(t,r_e) = M \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


where \displaystyle M = \frac{k_w}{\mu_w} is aquifer mobility.

Water flowrate becomes:

(15) q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h \cdot M \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


Cumulative water flux:

(16) Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = \theta \cdot r_e \cdot h \cdot M \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt


Substituting (11) into (16) leads to:

(17) Q^{\downarrow}_{AQ}(t) = \theta \cdot r_e \cdot h \cdot M \cdot \int_0^t d\xi \ \frac{\partial }{\partial r} \left[ \int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi}{r_e^2}, \frac{r}{r_e} \right) \, \dot p(\tau) d\tau \right]_{r=r_e}
(18) Q^{\downarrow}_{AQ}(t) = \theta \cdot h \cdot M \cdot \int_0^t d\xi \ \frac{\partial }{\partial r_D} \left[ \int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \, \dot p(\tau) d\tau \right]_{r_D=1}
(19) Q^{\downarrow}_{AQ}(t) = \theta \cdot h \cdot M \cdot \int_0^t d\xi \ \int_0^\xi \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} \, \dot p(\tau) d\tau

The above integral represents the integration over the D area in (\tau, \ \xi) plane (see Fig. 1):

(20) Q^{\downarrow}_{AQ}(t) = \theta \cdot h \cdot M \cdot \iint_D d\xi \ d\tau \, \dot p(\tau) \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1}

Fig. 1. Illustration of the integration D area in (\tau, \ \xi) plane



Changing the integration order from \tau \rightarrow \xi to \xi \rightarrow \tau leads to:

(21) Q^{\downarrow}_{AQ}(t) = \theta \cdot h \cdot M \cdot \int_0^t d\tau \int_\tau^t d\xi \ \dot p(\tau) \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} = \theta \cdot h \cdot M \cdot \int_0^t \dot p(\tau) d\tau \int_\tau^t d\xi \ \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1}

Replacing the variable:

(22) \xi = \tau + \frac{r_e^2}{\chi} \cdot t_D \rightarrow t_D = \frac{(\xi-\tau)\chi}{r_e^2} \rightarrow d\xi = \frac{r_e^2}{\chi} \cdot dt_D

and flux becomes:

(23) Q^{\downarrow}_{AQ}(t) = \theta \cdot h \cdot M \cdot \frac{r_e^2}{\chi} \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi/r_e^2} \frac{\partial p_1( t_D, r_D)}{\partial r_D} \Bigg|_{r_D=1} dt_D = B \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi/r_e^2} \frac{\partial p_1( t_D, r_D)}{\partial r_D} \Bigg|_{r_D=1} dt_D

where B is water influx constant and which leads to

Error rendering macro 'mathblock-ref' : Math Block with anchor=VEH could not be found.
and
Error rendering macro 'mathblock-ref' : Math Block with anchor=WeD could not be found.
.


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models / Radial VEH Aquifer Drive @model




  • No labels