Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 14 Next »

(1) \frac{\partial (\rho_A \, \phi) }{\partial t} + \nabla (\rho_A \, {\bf u}_A) = 0, \quad A = \{ O, G, W \}
(2) \int_V \, \frac{\partial (\rho_A \, \phi) }{\partial t} \, dV = - \int_V \, \nabla (\rho_A \, {\bf u}_A) \, dV = - \int_{\partial V} \, \rho \, {\bf u}_A \, d {\bf A}
(3) V \cdot \delta (\rho_A \, \phi) = \delta \, m_A \Rightarrow V \cdot \delta \left( \phi \, \sum_\alpha \rho_{A,\alpha} \, s_\alpha \right) = \mathring{\rho}_A \cdot \delta \, q_A, \quad \alpha = \{ o, g, w \}
(4) \Rightarrow \delta \left( \phi \, \sum_\alpha \frac{\rho_{A,\alpha}}{\mathring{\rho}_A} \, s_\alpha \right) = V^{-1} \cdot \delta \, q_A \Rightarrow \delta \left( \phi \, \sum_\alpha \frac{\mathring{V}_{A,\alpha}}{V_\alpha} \, s_\alpha \right) = V^{-1} \cdot \delta \, q_A
(5) \delta \left( \phi \, \sum_\alpha \frac{\mathring{V}_{A,\alpha}}{V_\alpha} \, s_\alpha \right) = V^{-1} \cdot \delta \, q_A


MBO fluid:

(6) \xi_{A, \alpha} = \frac{\mathring{V}_{A,\alpha}}{V_\alpha}
(7) \xi_{O, o} = \frac{\mathring{V}_{O, o}}{V_o} = \frac{1}{B_o}



(8) \xi_{O, g} = \frac{\mathring{V}_{O, o}}{V_o} = \frac{\mathring{V}_{O, o}}{\mathring{V}_{G, g}} \cdot \frac{\mathring{V}_{G, g}}{V_o} = \frac{R_s }{B_g}
(9) \xi_{G, o} = \frac{\mathring{V}_{G, o}}{V_o} = \frac{\mathring{V}_{G, o}}{\mathring{V}_{O, o}} \cdot \frac{\mathring{V}_{O, o}}{V_o} =\frac{R_s }{B_o}
(10) \xi_{G, g} = \frac{\mathring{V}_{G, g}}{V_g} = \frac{1}{B_g}
(11) \xi_{W, w} = \frac{\mathring{V}_{W, w}}{V_w} = \frac{1}{B_w}




Next step is to write the equations explicitly for MBO fluid.











  • No labels