Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 22 Next »

@wikipedia


Ideally balanced water + dead oil 1D waterflood model without gravity and capillary effects. 

(1) \frac{\partial s}{\partial t} + q \cdot \frac{\partial }{\partial x} \left( \frac{f}{\phi \, \Sigma} \right) = 0
(2) s(t=0,x) = 0
(3) s(t,0) = 1

where

\displaystyle s= E_D = \frac{s_w - s_{wi}}{1-s_{wi}-s_{or}}

water → oil displacement efficiency

q

sandface injection rate, assumed equal to sandface liquid production rate

\phi(x)

reservoir porosity

\Sigma(x) = h \, D

cross-section area available for flow

h(x)

reservoir thickness

D(x)

reservoir width = reservoir length transversal to flow

\displaystyle f = \frac{1}{1+M_{ro}/M_{rw}}

in-situ fractional flow function


M_{ro}= k_{ro}(s_o)/\mu_o
relative oil mobility

M_{wo} = k_{rw}(s_w)/\mu_w

relative water mobility


Approximations



In many practical applications (for example, laboratory SCAL tests and reservoir proxy-modeling) one can assume constant porosity and reservoir width: 

(4) \frac{\partial s}{\partial t_D} +\frac{\partial f}{\partial x_D} = 0
(5) s(t=0,x) = 0
(6) s(t,0) = 1

where

\displaystyle t_D = \frac{V_\phi \, t}{q}

dimensionless time

\displaystyle x_D = \frac{x}{L}

dimensionless distance

L

reservoir length along x-axis

V_\phi= \phi \cdot h \cdot D \cdot L

reservoir pore volume


The equation  (4) can be explicitly integrated:

(7) x_D(s) = \begin{cases}\dot f(s) \cdot t_D, & \mbox{if } s < s^*\\ 2 x^*_D- \dot f(s) \cdot t_D, & \mbox{if } s \geq s^*\end{cases}

where

s^*

critical saturation where fractional flow function reaches inflection point:  \ddot f(s^*) = 0

x^*_D= f(s^*) \cdot t_D^*

 "inflection" distance   

t_D^*

"inflection" time

\displaystyle \dot f(s) = \frac{d f}{ds}, \, \, \ddot f(s) = \frac{d^2 f}{ds^2}

first and second derivatives of the fractional flow function


Algebraic equation  (7) can be used to find a solution of  (4) in terms of saturation over time and distance:  s(t,x) (see Fig. 1).


Fig. 1 – Sample case of reservoir saturation profile  s(t,x) capturing themoment when water front is still in a mid-way t the producing well (sitting at x_D = 1 \Leftrightarrow x = L)


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Dynamic Flow Model / Reservoir Flow Model (RFM)

Production / Subsurface Production / Reserves Depletion /  Recovery Methods ]




  • No labels