Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

(1) \dot m = \dot m_1 + \dot m_2
(2) A = A_1 + A_2
(3) \begin{cases} s_1 = A_1/A \\ s_2 = A_2/A \end{cases}
(4) s_1 + s_2 = 1
(5) u_m = s_1 \cdot \dot u_1 + s_2 \cdot \dot u_2
(6) \begin{cases} q_1 = \dot m_1 / \rho_1 = A_1 \, u_1 \Rightarrow \dot m_1 = \rho_1 \, A_1 \, u_1 \\ q_2 = \dot m_2 / \rho_2 = A_2 \, u_2 \Rightarrow \dot m_2 = \rho_2 \, A_2 \, u_2 \end{cases}


The areas ratio:

(7) \omega_{12} = \frac{A_1}{A_2} = \frac{\dot m_1 \, \rho_2 \, u_2}{\dot m_2 \, \rho_1 \, u_1}


(8) \begin{cases} A_1 = \frac{\omega_{12}}{1+\omega_{12}} \cdot A \\ A_2 = \frac{1}{1+\omega_{12}} \cdot A \end{cases}


For homogeneous 2-phase pipe flow:  u_1 = u_2 = u_m and areas ratio are going to be:

(9) \omega_{12} = \frac{\dot m_1 \, \rho_2 }{\dot m_2 \, \rho_1}


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid Flow / Pipe Flow / Pipe Flow Dynamics / Pipe Flow Simulation

Pipe ] [ Pipeline ] [ Pipeline Engineering ]


  • No labels