Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 34 Next »

The most general Pump model is given as a function of volumetric flowrate of the intake p_{\rm in} and discharge pressure  p_{\rm out}:

(1) q = q(p_{\rm out}, p_{\rm in})

The electrical power consumption   \displaystyle W = \frac{dE}{dt} is given by:

(2) W = \eta(q) \cdot q \cdot (p_{\rm out}-p_{\rm in})

where

\eta

pump efficiency


In most practical cases  the pump  model  (1) depends on the difference between intake and discharge pressure  p_{\rm out} - p_{\rm in} and called pump characteristic curve (see Fig. 1):

(3) q = q(p_{\rm out} - p_{\rm in})


Fig. 1. Pump Characteristic Curve as function of delta pressure  p = p_{\rm out}-p_{\rm in}.


A popular pump proxy model is given by the quadratic equation:

(4) q = \frac{q_{\rm max}}{2 \cdot k_f} \cdot \left[ -1 + k_f + \sqrt{ (1 + k_f)^2 - 4 \cdot k_f \cdot (p_{\rm out}- p_{\rm in})/\delta p_{\rm max}) \ } \, \right]
(5) p_{\rm out} = p_{\rm in} + \delta p_{\rm max} \cdot \left[ 1+ (k_f -1 ) \cdot \frac{q}{q_{\rm max}} - k_f \cdot \left( \frac{q}{q_{\rm max}} \right)^2 \right ]
(6) \eta(q) = 4 \, \eta_{\rm max} \cdot q/q_{\rm max} \cdot ( 1 - q/q_{\rm max})

where

\delta p_{\rm max}

maximum pressure gain that pump can exert over the input pressure  p_{\rm in}

q_{\rm max}

maximum flowrate that pump can produce

k_f \in [0,1]

total hydraulic pump friction (dimensionless)

\eta

pump efficiency

\eta_{\rm max}

maximum pump efficiency


The plunger pump and centrifugal pumps are normally adjusted by working frequency 

See also


Natural Science / Engineering / Device / Pump

Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS)


References





  • No labels