Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 22 Next »


Motivation


Explicit solution of  Pressure Profile in Homogeneous Steady-State Pipe Flow @model


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)

q_0

Intake flowrate 

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta


Pipeline trajectory inclination, \displaystyle \cos \theta = \frac{dz}{dl} = \rm const

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole

\theta (l) = \theta = \rm const

f(l) = f = \rm const

\rho = \rho^* \cdot ( 1 + c^* \cdot p)



Equations


Pressure profile along the pipe
(1) L = \frac{1}{2 \, G \, c^* \rho^*} \cdot \ln \frac{G \, \rho^2-F}{G \, \rho_0^2-F} -\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}
(2) \cos \theta \neq 0
(3) L = \frac{1}{2F\, c^* \rho^*} \cdot (\rho_0^2 - \rho^2) - \frac{2d}{f} \cdot \ln \frac{\rho_0}{\rho}
(4) \cos \theta = 0

where

\displaystyle j_m = \frac{ \dot m }{ A}

mass flux

\displaystyle \dot m = \frac{dm }{ dt}

mass flowrate

\displaystyle q_0 = \frac{dV_0}{dt} = \frac{ \dot m }{ \rho_0}

Intake volumetric flowrate

\rho_0 = \rho(T_0, p_0)

Intake fluid density 

\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

f = f({\rm Re}(T,\rho), \, \epsilon) = \rm const

Darcy friction factor 

\displaystyle {\rm Re}(T,\rho) =\frac{j_m \cdot d}{\mu(T,\rho)}

Reynolds number in Pipe Flow

\mu(T,\rho)

dynamic viscosity as function of fluid temperature  T and density  \rho

\displaystyle d = \sqrt{ \frac{4 A}{\pi}} = \rm const

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

G = g \, \cos \theta = \rm const

gravity acceleration along pipe 

F = j_m^2 \cdot f/(2d) = F(l) = \rm const




The equation  (3) for horizontal pipelines can be re-written explicitly in terms of pressure:

(5) \frac{fL}{2d} = (\rho^*/j_m^2) \cdot (p_0-p) \cdot (1+ 0.5 \, c^* \cdot (p+p_0)) - \ln \frac{1+c^* \cdot p_0}{1+c^* \cdot p}


See also


References


  • No labels