Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 3 Next »

In case of dual-barrier well completion with flowing fluid in the annulus (see Fig. 3) the HTC is defined by the following equation:

(1) \frac{1}{ d_{ti} \, U} = \frac{1}{d_{ti} \, U_{ti}} + \frac{1}{\lambda_t} \, \ln \frac{d_t}{d_{ti}} + + \frac{1}{\lambda_{a, \rm eff}} \ln \frac{d_{ci}}{d_t} + \frac{1}{\lambda_c} \ln \frac{d_c}{d_{ci}} + \frac{1}{\lambda_{cem}} \ln \frac{d_w}{d_c}

where

d_t = 2 \cdot r_t

outer radius of tubing (with outer radius r_t)

d_{ti} = 2 \cdot r_{ti}

inner diameter of the tubing (with inner radius r_{ti})

h_t = r_t - r_{ti}

tubing wall thickness

d_c = 2 \cdot r_c

outer radius of casing (with outer radius r_c)

d_{ci} = 2 \cdot r_{ci}

inner diameter of the casing (with inner radius r_{ci})

h_c = r_c - r_i

casing wall thickness

\lambda_t

thermal conductivity of tubing material

\lambda

thermal conductivity of fluid moving through the tubing

\lambda_{a, \rm eff} = \lambda_a \cdot \epsilon_a

effective thermal conductivity of the annulus 

\epsilon_a

Natural Convection Heat Transfer Multiplier

\lambda_a

thermal conductivity of fluid in the annulus

\displaystyle U_{ti} = \frac{\lambda}{d_{ti}} \, {\rm Nu}_{ti}

heat transfer coefficient (HTC)
between inner surface of tubing and moving fluid

In case of single-string well completion with flowing fluid in the annulus (see Fig. 3) the HTC is defined by the following equation:

(2) \frac{1}{ d_{ti} \, U} = \frac{1}{d_{ti} \, U_{ti}} + \frac{1}{\lambda_t} \, \ln \frac{d_t}{d_{ti}} + + \frac{1}{\lambda_{a, \rm eff}} \ln \frac{d_{ci}}{d_t} + \frac{1}{\lambda_c} \ln \frac{d_c}{d_{ci}} + \frac{1}{\lambda_{cem}} \ln \frac{d_w}{d_c}

where

d_t = 2 \cdot r_t

outer radius of tubing (with outer radius r_t)

d_{ti} = 2 \cdot r_{ti}

inner diameter of the tubing (with inner radius r_{ti})

h_t = r_t - r_{ti}

tubing wall thickness

d_c = 2 \cdot r_c

outer radius of casing (with outer radius r_c)

d_{ci} = 2 \cdot r_{ci}

inner diameter of the casing (with inner radius r_{ci})

h_c = r_c - r_i

casing wall thickness

\lambda_t

thermal conductivity of tubing material

\lambda

thermal conductivity of fluid moving through the tubing

\lambda_{a, \rm eff} = \lambda_a \cdot \epsilon_a

effective thermal conductivity of the annulus 

\epsilon_a

Natural Convection Heat Transfer Multiplier

\lambda_a

thermal conductivity of fluid in the annulus

\displaystyle U_{ti} = \frac{\lambda}{d_{ti}} \, {\rm Nu}_{ti}

heat transfer coefficient (HTC)
between inner surface of tubing and moving fluid

In case the annulus is filled with stagnant fluid the annulus fluid convection will be natural and the Convection Heat Transfer Multiplier  \epsilon_a(\rm Ra)  is a function of Rayleigh number  \rm Ra.

In case the annulus fluid is moving the annulus fluid convection will be forced and the Convection Heat Transfer Multiplier  \epsilon_a can be approximated as:


See also


Physics / Thermodynamics / Heat Transfer /  Heat Transfer Coefficient (HTC) / Heat Transfer Coefficient (HTC) @model

Thermal conductivity ] [ Nusselt number (Nu) ]

  • No labels