Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 162 Next »


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Fluid temperature at inlet point ( l=0)

T(l)

Along-pipe temperature profile 

p_0

Fluid pressure at inlet point ( l=0)

\rho(T, p)

Fluid density 

q_0

Fluid flowrate  at inlet point ( l=0)

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole


Equations


(1) \left[\rho(p) - j_m^2 \cdot c(p) \right] \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l) - \frac{ j_m^2 }{2 d} \cdot f(p)
(2) p(l=0) = p_0


(3) u(l) = \frac{j_m}{\rho(l)}
(4) q(l) =A \cdot u(l)

where

\displaystyle j_m =\frac{ \rho_0 \, q_0}{A}= \rm const

mass flux

q_0 = q(l=0)

Fluid flowrate at inlet point ( l=0)

\rho_0 = \rho(T_0, p_0)

Fluid density at inlet point ( l=0)

\rho(l) = \rho(T(l), p(l))

Fluid density at any point  l

\displaystyle с(p) = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial p} \right)_T

Fluid Compressibility

f(T, \rho) = f({\rm Re}(T, \rho), \, \epsilon)

Darcy friction factor

\displaystyle {\rm Re}(T,\rho) = \frac{j_m \cdot d}{\mu(T, \rho)}

Reynolds number in Pipe Flow

\mu(T,\rho)

dynamic viscosity as function of fluid temperature  T and density  \rho

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}= \rm const

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)



Approximations



Pressure Profile in G-Proxy Pipe Flow @modelquardrature

\theta(l) = \theta_0 = \rm const

Pressure Profile in GF-Proxy Pipe Flow @modelquardrature

\theta(l) = \theta_0 = \rm constf(T, p)=f_0 = \rm const

Pressure Profile in GFC-Proxy Pipe Flow @modelalgebraic equation

\theta(l) = \theta_0 = \rm constf(T, p)=f_0 = \rm const\rho(T, p) = \rho(T) \cdot (1+ c^*(T) \cdot p/p_0)

Pressure Profile in FC0-Proxy Pipe Flow @modeclosed-form expression

\rho(p)=\rho_0 = \rm constf(T, p)=f_0 = \rm const


See also


  • No labels